
SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

A SIMPLE PARALLEL ALGORITHM WITH AN O(1/T)
CONVERGENCE RATE FOR GENERAL CONVEX PROGRAMS∗

HAO YU† AND MICHAEL J. NEELY†

Abstract. This paper considers convex programs with a general (possibly non-differentiable)
convex objective function and Lipschitz continuous convex inequality constraint functions. A simple
algorithm is developed and achieves an O(1/t) convergence rate. Similar to the classical dual subgra-
dient algorithm and the ADMM algorithm, the new algorithm has a parallel implementation when
the objective and constraint functions are separable. However, the new algorithm has a faster O(1/t)
convergence rate compared with the best known O(1/

√
t) convergence rate for the dual subgradient

algorithm with primal averaging. Further, it can solve convex programs with nonlinear constraints,
which cannot be handled by the ADMM algorithm. The new algorithm is applied to a multipath
network utility maximization problem and yields a decentralized flow control algorithm with the fast
O(1/t) convergence rate.

Key words. convex programs, parallel algorithms, convergence rates

AMS subject classifications. 90C25, 90C30

1. Introduction. Fix positive integers n and m. Consider the general convex
program:

minimize f(x)(1)

subject to gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m},(2)

x ∈ X ,(3)

where set X ⊆ Rn is a closed convex set; function f(x) is continuous and convex on
X ; and functions gk(x),∀k ∈ {1, 2, . . . ,m} are convex and Lipschitz continuous on
X . Note that the functions f(x), g1(x), . . . , gm(x) are not necessarily differentiable.
Denote the stacked vector of multiple functions g1(x), g2(x), . . . , gm(x) as g(x) =[
g1(x), g2(x), . . . , gm(x)

]T
. The Lipschitz continuity of each gk(x) implies that g(x)

is Lipschitz continuous on X . Throughout this paper, we use ‖ ·‖ to denote the vector
Euclidean norm and Lipschitz continuity is defined with respect to the Euclidean
norm. The following assumptions are imposed on the convex program (1)-(3):

Assumption 1 (Basic Assumptions).
• There exists a (possibly non-unique) optimal solution x∗ ∈ X that solves the

convex program (1)-(3).
• There exists a constant β such that ‖g(x1) − g(x2)‖ ≤ β‖x1 − x2‖ for all
x1,x2 ∈ X , i.e., the Lipschitz continuous function g(x) has modulus β.

Assumption 2 (Existence of Lagrange Multipliers). The convex program (1)-(3)
has Lagrange multipliers attaining the strong duality. That is, there exists a Lagrange
multiplier vector λ∗ = [λ∗1, λ

∗
2, . . . , λ

∗
m]T ≥ 0 such that

q(λ∗) = min
x∈X

{
f(x) : gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}

}
,

where q(λ) = min
x∈X
{f(x) +

∑m
k=1 λkgk(x)} is the Lagrangian dual function of problem

(1)-(3).

∗Using the methodology initiated in the current paper, we further developed a different primal-
dual type algorithm with the same O(1/t) convergence rate in the extended work [24].
†Department of Electrical Engineering, University of Southern California, Los Angeles, CA

(yuhao@usc.edu, mjneely@usc.edu).

mailto:yuhao@usc.edu
mailto:mjneely@usc.edu

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Assumption 2 is a mild assumption. For convex programs, Assumption 2 is implied
by the existence of a vector s ∈ X such that gk(s) < 0 for all k ∈ {1, . . . ,m}, called
the Slater condition [1, 5]. However, there are convex programs where Assumption 2
holds but the Slater condition does not hold.

1.1. New Algorithm. Consider the following algorithm described in Algo-
rithm 1. The algorithm computes vectors x(t) ∈ X for iterations t ∈ {0, 1, 2, . . .}.
Define the average over the first t > 0 iterations as x(t) = 1

t

∑t−1
τ=0 x(τ). The algo-

rithm uses an initial guess vector that is represented as x(−1) and that is chosen as

any vector in X . The algorithm also uses vector variables Q(t) =
[
Q1(t), . . . , Qm(t)

]T
in the computations. The main result of this paper is that, whenever the parameter
α is chosen to satisfy α ≥ β2/2, the vector x(t) closely approximates a solution to the
convex program and has an approximation error that decays like O(1/t).

Algorithm 1

Let α > 0 be a constant parameter. Choose any x(−1) ∈ X . Initialize Qk(0) =
max{0,−gk(x(−1))},∀k ∈ {1, 2, . . . ,m}. At each iteration t ∈ {0, 1, 2, . . .}, observe
x(t− 1) and Q(t) and do the following:

• Choose x(t) as

x(t) = argmin
x∈X

{
f(x) +

[
Q(t) + g(x(t− 1))

]T
g(x) + α‖x− x(t− 1)‖2

}
,

• Update virtual queues via

Qk(t+ 1) = max{−gk(x(t)), Qk(t) + gk(x(t))},∀k ∈ {1, 2, . . . ,m}.

• Update the averages x(t) via

x(t+ 1) =
1

t+ 1

t∑
τ=0

x(τ) = x(t)
t

t+ 1
+ x(t)

1

t+ 1
.

The variables x(t) are called primal variables. The variables Q(t) can be viewed
as dual variables because they have a close connection to Lagrange multipliers. The
variables Q(t) shall be called virtual queues because their update rule resembles a
queueing equation. The virtual queue update used by Algorithm 1 is related to tradi-
tional virtual queue and dual variable update rules. However, there is an important
difference. A traditional update rule is Qk(t+ 1) = max{Qk(t) + gk(x(t)), 0} [3, 16].
In contrast, the new algorithm takes a max with −gk(x(t)), rather than a max with
0. The primal update rule for x(t) is also new and is discussed in more detail in the
next subsection.

Algorithm 1 has the following desirable property: If the functions f(x) and g(x)
are separable with respect to components or blocks of x, then the primal updates for
x(t) can be decomposed into several smaller independent subproblems, each of which
only involves a component or block of x(t).

1.2. The Dual Subgradient Algorithm and the Drift-Plus-Penalty Al-
gorithm. The dual subgradient algorithm is a well known iterative technique that
approaches optimality for certain strictly convex problems [3]. A modification of the
dual subgradient algorithm that averages the resulting sequence of primal estimates

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

is known to solve general convex programs (without requiring strict convexity) and
provides an O(1/

√
t) convergence rate1 [15, 13, 17], where t is the number of itera-

tions. Work [12] improves the convergence rate of the dual subgradient algorithm to
O(1/t) in the special case when the objective function f(x) is strongly convex and
second order differentiable and constraint functions gk(x) are second order differen-
tiable and have bounded Jacobians. A recent work in [23] shows that the convergence
rate of the dual subgradient algorithm with primal averaging is O(1/t) without re-
quiring the differentiability of f(x) and gk(x) but still requiring the strong convexity
of f(x). (Further improvements are also possible under more restrictive assumptions,
see [23].) The dual subgradient algorithm with primal averaging is also called the
Drift-Plus-Penalty (DPP) algorithm. This is because it is a special case of a stochas-
tic optimization procedure that minimizes a drift expression for a quadratic Lyapunov
function [16]. One advantage of these dual subgradient and drift approaches is that the
computations required at every iteration are simple and can yield parallel algorithms
when f(x) and gk(x) are separable.

Algorithm 1 developed in the current paper maintains this simplicity on every
iteration, but provides fast O(1/t) convergence for general convex programs, without
requiring strict convexity or strong convexity. For example, the algorithm has the
O(1/t) convergence rate in the special case of linear f(x). Algorithm 1 is similar to
a DPP algorithm, or equivalently, a classic dual subgradient algorithm with primal
averaging, with the following distinctions:

1. The Lagrange multiplier (“virtual queue”) update equation for Qk(t) is mod-
ified to take a max with −gk(x(t)), rather than simply project onto the non-
negative real numbers.

2. The minimization step augments the Qk(t) weights with gk(x(t − 1)) values
obtained on the previous step. These gk(x(t−1)) quantities, when multiplied
by constraint functions gk(x), yield a cross-product term in the primal update.
This cross term together with another newly introduced quadratic term in
the primal update can cancel a quadratic term in an upper bound of the
Lyapunov drift such that a finer analysis of the drift-plus-penalty leads to
the fast O(1/t) convergence rate.

3. A quadratic term, which is similar to a term used in proximal algorithms [19],
is introduced. This provides a strong convexity “pushback”. The pushback
is not sufficient to alone cancel the main drift components, but it cancels
residual components introduced by the new gk(x(t− 1)) weight.

1.3. The ADMM Algorithm. The Alternating Direction Method of Multipli-
ers (ADMM) is an algorithm used to solve linear equality constrained convex programs
in the following form:

minimize f1(x) + f2(y)(4)

subject to Ax + By = c,(5)

x ∈ X ,y ∈ Y.(6)

1In [15, 13, 17], the dual subgradient algorithm with primal averaging is proven to achieve an
ε-approximate solution with O(1/ε2) iterations by using an O(ε) step size. We say that the dual
subgradient algorithm with primal averaging has an O(1/

√
t) convergence rate because an algorithm

with O(1/
√
t) convergence requires the same O(1/ε2) iterations to yield an ε-approximate solution.

However, the dual subgradient algorithm in [15, 13, 17] does not have vanishing errors as does an
algorithm with O(1/

√
t) convergence.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Define the augmented Lagrangian as Lρ(x,y,λ) = f1(x) + f2(y) + λT
(
Ax + By −

c
)

+ ρ
2‖Ax + By − c‖2. At each iteration t, the ADMM algorithm consists of the

following steps:
• Update x(t) = argminx∈X Lρ(x,y(t− 1),λ(t− 1)).
• Update y(t) = argminy∈Y Lρ(x(t),y,λ(t− 1)).

• Update λ(t) = λ(t− 1) + ρ
(
Ax(t) + By(t)− c

)
.

Thus, the ADMM algorithm yields a distributed algorithm where the updates of x and
y only involve local sub-problems and is suitable to solve large scale convex programs
in machine learning, network scheduling, computational biology and finance [4].

The best known convergence rate of ADMM algorithm for convex program with
general convex f1(·) and f2(·) is recently shown to be O(1/t) [6, 9]. An asynchronous
ADMM algorithm with the same O(1/t) convergence rate is studied in [21]. Note that
we can apply Algorithm 1 to solve the problem (4)-(6) after replacing the equality
constraint Ax + By = c by two linear inequality constraints Ax + By ≤ c and
Ax + By ≥ c.2 It can be observed that the algorithm yielded by Algorithm 1 is also
separable for x and y. In fact, the updates of x and y in Algorithm 1 are fully parallel
while the ADMM algorithm updates x and y sequentially. The remaining part of this
paper shows that the convergence rate of Algorithm 1 is also O(1/t).

However, a significant limitation of the ADMM algorithm is that it can only solve
problems with linear constraints. In contrast, Algorithm 1 proposed in this paper can
solve general convex programs with non-linear constraints.

1.4. Decentralized Multipath Network Flow Control Problems. Section
4 presents an example application to multipath network flow control problems. The
algorithm has a queue-based interpretation that is natural for networks. Prior work
on distributed optimization for networks is in [11, 15, 2, 23, 22]. It is known that the
DPP algorithm achieves O(1/

√
t) convergence for general networks [15], and several

algorithms show faster O(1/t) convergence for special classes of strongly convex prob-
lems [2, 23]. However, multipath network flow problems fundamentally fail to satisfy
the strong convexity property because they have routing variables that participate in
the constraints but not in the objective function. The algorithm of the current paper
does not require strong convexity. It easily solves this multi-path scenario with fast
O(1/t) convergence. The algorithm also has a simple distributed implementation and
allows for general convex but nonlinear constraint functions.

2. Preliminaries and Basic Analysis. This section presents useful prelimi-
naries in convex analysis and important facts of Algorithm 1.

2.1. Preliminaries.

Definition 1 (Lipschitz Continuity). Let X ⊆ Rn be a convex set. Function
h : X → Rm is said to be Lipschitz continuous on X with modulus L if there exists
L > 0 such that ‖h(y)− h(x)‖ ≤ L‖y − x‖ for all x,y ∈ X .

Definition 2 (Strongly Convex Functions). Let X ⊆ Rn be a convex set. Func-
tion h is said to be strongly convex on X with modulus α if there exists a constant
α > 0 such that h(x)− 1

2α‖x‖
2 is convex on X .

2In fact, we do not need to replace the linear equality constraint with two inequality constraints.
We can apply Algorithm 1 to problem (4)-(6) directly by modifying the virtual queue update equa-
tions as Qk(t + 1) = Qk(t) + gk(x(t)),∀k ∈ {1, 2, . . . ,m}. In this case, a simple adaption of the
convergence rate analysis in this paper can establish the same O(1/t) convergence rate. However, to
simplify the presentation, this paper just considers the general convex program in the form of (1)-(3)
since any linear equality can be equivalently represented by two linear inequalities.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

By the definition of strongly convex functions, it is easy to show that if h(x) is
convex and α > 0, then h(x) + α‖x − x0‖2 is strongly convex with modulus 2α for
any constant x0.

Lemma 1 (Theorem 6.1.2 in [7]). Let h(x) be strongly convex on X with modulus
α. Let ∂h(x) be the set of all subgradients of h at point x. Then h(y) ≥ h(x) +
dT (y − x) + α

2 ‖y − x‖2 for all x,y ∈ X and all d ∈ ∂h(x).

Lemma 2 (Proposition B.24 (f) in [3]). Let X ⊆ Rn be a convex set. Let function
h be convex on X and xopt be a global minimum of h on X . Let ∂h(x) be the set of all
subgradients of h at point x. Then, there exists d ∈ ∂h(xopt) such that dT (x−xopt) ≥
0 for all x ∈ X .

Corollary 1. Let X ⊆ Rn be a convex set. Let function h be strongly convex
on X with modulus α and xopt be a global minimum of h on X . Then, h(xopt) ≤
h(x)− α

2 ‖x
opt − x‖2 for all x ∈ X .

Proof. A special case when h is differentiable and X = Rn is Theorem 2.1.8 in
[18]. The proof for general h and X is as follows: Fix x ∈ X . By Lemma 2, there
exists d ∈ ∂h(xopt) such that dT (x− xopt) ≥ 0. By Lemma 1, we also have

h(x) ≥ h(xopt) + dT (x− xopt) +
α

2
‖x− xopt‖2

(a)

≥ h(xopt) +
α

2
‖x− xopt‖2,

where (a) follows from the fact that dT (x− xopt) ≥ 0.

2.2. Properties of the Virtual Queues.

Lemma 3. In Algorithm 1, we have
1. At each iteration t ∈ {0, 1, 2, . . .}, Qk(t) ≥ 0 for all k ∈ {1, 2, . . . ,m}.
2. At each iteration t ∈ {0, 1, 2, . . .}, Qk(t) + gk(x(t − 1)) ≥ 0 for all k ∈
{1, 2 . . . ,m}.

3. At iteration t = 0, ‖Q(0)‖2 ≤ ‖g(x(−1))‖2. At each iteration t ∈ {1, 2, . . .},
‖Q(t)‖2 ≥ ‖g(x(t− 1))‖2.

Proof.
1. Fix k ∈ {1, 2, . . . ,m}. Note that Qk(0) ≥ 0 by the initialization rule Qk(0) =

max{0,−gk(x(−1))}. Assume Qk(t) ≥ 0 and consider time t+1. If gk(x(t)) ≥
0, then Qk(t + 1) = max{−gk(x(t)), Qk(t) + gk(x(t))} ≥ Qk(t) + gk(x(t)) ≥
0. If gk(x(t)) < 0, then Qk(t + 1) = max{−gk(x(t)), Qk(t) + gk(x(t))} ≥
−gk(x(t)) > 0. Thus, Qk(t+ 1) ≥ 0. The result follows by induction.

2. Fix k ∈ {1, 2, . . . ,m}. Note that Qk(0) + gk(x(−1)) ≥ 0 by the initialization
rule Qk(0) = max{0,−gk(x(−1))} ≥ −gk(x(−1)). For t ≥ 1, by the virtual
queue update equation, we have

Qk(t) = max{−gk(x(t− 1)), Qk(t− 1) + gk(x(t− 1))} ≥ −gk(x(t− 1)),

which implies that Qk(t) + gk(x(t− 1)) ≥ 0.
3. • For t = 0. Fix k ∈ {1, 2, . . . ,m}. Consider the cases gk(x(−1)) ≥

0 and gk(x(−1)) < 0 separately. If gk(x(−1)) ≥ 0, then Qk(0) =
max{0,−gk(x(−1))} = 0 and so |Qk(0)| ≤ |gk(x(−1))|. If gk(x(−1)) <
0, then Qk(0) = max{0,−gk(x(−1))} = −gk(x(−1)). Thus, in both
cases, we have |Qk(0)| ≤ |gk(x(−1))|. Squaring both sides and summing
over k ∈ {1, 2, . . . ,m} yields ‖Q(0)‖2 ≤ ‖g(x(−1))‖2.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

• For t ≥ 1. Fix k ∈ {1, 2, . . . ,m}. Consider the cases gk(x(t − 1)) ≥ 0
and gk(x(t− 1)) < 0 separately. If gk(x(t− 1)) ≥ 0, then

Qk(t) = max{−gk(x(t− 1)), Qk(t− 1) + gk(x(t− 1))}
≥ Qk(t− 1) + gk(x(t− 1))

(a)

≥ gk(x(t− 1))

= |gk(x(t− 1))|,

where (a) follows from part 1. If gk(x(t− 1)) < 0, then

Qk(t) = max{−gk(x(t− 1)), Qk(t− 1) + gk(x(t− 1))}
≥ −gk(x(t− 1))

= |gk(x(t− 1))|.

Thus, in both cases, we have |Qk(t)| ≥ |gk(x(t−1))|. Squaring both sides
and summing over k ∈ {1, 2, . . . ,m} yields ‖Q(t)‖2 ≥ ‖g(x(t− 1))‖2.

2.3. Properties of the Drift. Recall that Q(t) =
[
Q1(t), . . . , Qm(t)

]T
is the

vector of virtual queue backlogs. Define L(t) = 1
2‖Q(t)‖2. The function L(t) shall be

called a Lyapunov function. Define the Lyapunov drift as

∆(t) = L(t+ 1)− L(t) =
1

2

[
‖Q(t+ 1)‖2 − ‖Q(t)‖2

]
.(7)

Lemma 4. At each iteration t ∈ {0, 1, 2, . . .} in Algorithm 1, an upper bound of
the Lyapunov drift is given by

∆(t) ≤ QT (t)g(x(t)) + ‖g(x(t))‖2.(8)

Proof. The virtual queue update equations Qk(t+1) = max{−gk(x(t)), Qk(t)+
gk(x(t))},∀k ∈ {1, 2, . . . ,m} can be rewritten as

Qk(t+ 1) = Qk(t) + g̃k(x(t)),∀k ∈ {1, 2, . . . ,m},(9)

where

g̃k(x(t)) =

{
gk(x(t)), if Qk(t) + gk(x(t)) ≥ −gk(x(t))

−Qk(t)− gk(x(t)), else
∀k.

Fix k ∈ {1, 2, . . . ,m}. Squaring both sides of (9) and dividing by 2 yields:

1

2
(Qk(t+ 1))2

=
1

2
(Qk(t))2 +

1

2

(
g̃k(x(t))

)2
+Qk(t)g̃k(x(t))

=
1

2
(Qk(t))2 +

1

2

(
g̃k(x(t))

)2
+Qk(t)gk(x(t)) +Qk(t)

(
g̃k(x(t))− gk(x(t))

)
(a)
=

1

2
(Qk(t))2 +

1

2

(
g̃k(x(t))

)2
+Qk(t)gk(x(t))

−
(
g̃k(x(t)) + gk(x(t))

)(
g̃k(x(t))− gk(x(t))

)
=

1

2
(Qk(t))2 − 1

2

(
g̃k(x(t))

)2
+Qk(t)gk(x(t)) +

(
gk(x(t))

)2
≤1

2
(Qk(t))2 +Qk(t)gk(x(t)) +

(
gk(x(t))

)2
,

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

where (a) follows from the fact that Qk(t)
(
g̃k(x(t)) − gk(x(t))

)
= −

(
g̃k(x(t)) +

gk(x(t))
)(
g̃k(x(t))−gk(x(t))

)
, which can be shown by considering g̃k(x(t)) = gk(x(t))

and g̃k(x(t)) 6= gk(x(t)). Summing over k ∈ {1, 2, . . . ,m} yields

1

2
‖Q(t+ 1)‖2 ≤ 1

2
‖Q(t)‖2 + QT (t)g(x(t)) + ‖g(x(t))‖2.

Rearranging the terms yields the desired result.

3. Convergence Rate Analysis of Algorithm 1 . This section analyzes the
convergence rate of Algorithm 1 for the problem (1)-(3).

3.1. An Upper Bound of the Drift-Plus-Penalty Expression.

Lemma 5. Let x∗ be an optimal solution of the problem (1)-(3). If α ≥ 1
2β

2 in
Algorithm 1, then for all t ≥ 0, we have

∆(t) + f(x(t))

≤f(x∗) + α
[
‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2

]
+

1

2

[
‖g(x(t))‖2 − ‖g(x(t− 1))‖2

]
,

where β is defined in Assumption 1.

Proof. Fix t ≥ 0. Note that Lemma 3 implies that Q(t)+g(x(t−1)) is component-

wise nonnegative. Hence, the function f(x) +
[
Q(t) + g(x(t − 1))

]T
g(x) is convex

with respect to x on X . Since α‖x− x(t− 1)‖2 is strongly convex with respect to x
with modulus 2α, it follows that

f(x) +
[
Q(t) + g(x(t− 1))

]T
g(x) + α‖x− x(t− 1)‖2

is strongly convex with respect to x with modulus 2α.
Since x(t) is chosen to minimize the above strongly convex function, by Corol-

lary 1, we have

f(x(t)) +
[
Q(t) + g(x(t− 1))

]T
g(x(t)) + α‖x(t)− x(t− 1)‖2

≤f(x∗) +
[
Q(t) + g(x(t− 1))

]T
g(x∗)︸ ︷︷ ︸

≤0

+α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2

(a)

≤f(x∗) + α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2,(10)

where (a) follows by using the fact that gk(x∗) ≤ 0 for all k ∈ {1, 2, . . . ,m} and
Qk(t) + gk(x(t − 1)) ≥ 0 (i.e., part 2 in Lemma 3) to eliminate the term marked by
an underbrace.

Note that uT1 u2 = 1
2

[
‖u1‖2 + ‖u2‖2 − ‖u1 − u2‖2

]
for any u1,u2 ∈ Rm. Thus,

we have

g(x(t− 1))Tg(x(t)) =
1

2

[
‖g(x(t− 1))‖2 + ‖g(x(t))‖2 − ‖g(x(t− 1))− g(x(t))‖2

]
.

(11)

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Substituting (11) into (10) and rearranging terms yields

f(x(t)) + QT (t)g(x(t))

≤f(x∗) + α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2 − α‖x(t)− x(t− 1)‖2

+
1

2
‖g(x(t− 1))− g(x(t))‖2 − 1

2
‖g(x(t− 1))‖2 − 1

2
‖g(x(t))‖2

(a)

≤f(x∗) + α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2 + (
1

2
β2 − α)‖x(t)− x(t− 1)‖2

− 1

2
‖g(x(t− 1))‖2 − 1

2
‖g(x(t))‖2

(b)

≤f(x∗) + α‖x∗ − x(t− 1)‖2 − α‖x∗ − x(t)‖2 − 1

2
‖g(x(t− 1))‖2 − 1

2
‖g(x(t))‖2,

where (a) follows from the fact that ‖g(x(t−1))−g(x(t))‖ ≤ β‖x(t)−x(t−1)‖, which
further follows from the assumption that g(x) is Lipschitz continuous with modulus
β; and (b) follows from the fact α ≥ 1

2β
2.

Summing (8) with the above inequality yields

∆(t) + f(x(t))

≤f(x∗) + α
[
‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2

]
+

1

2

[
‖g(x(t))‖2 − ‖g(x(t− 1))‖2

]
.

3.2. Objective Value Violations.

Lemma 6. Let x∗ be an optimal solution of the problem (1)-(3) and β be defined
in Assumption 1.

1. If α ≥ 1
2β

2 in Algorithm 1, then for all t ≥ 1, we have
∑t−1
τ=0 f(x(τ)) ≤

tf(x∗) + α‖x∗ − x(−1)‖2.

2. If α > 1
2β

2 in Algorithm 1, then for all t ≥ 1, we have
∑t−1
τ=0 f(x(τ)) ≤

tf(x∗) + α‖x∗ − x(−1)‖2 + α
2α−β2 ‖g(x∗)‖2 − 1

2‖Q(t)‖2.

Proof. By Lemma 5, we have ∆(τ) + f(x(τ)) ≤ f(x∗) + α[‖x∗ − x(τ − 1)‖2 −
‖x∗ − x(τ)‖] + 1

2 [‖g(x(τ))‖2 −‖g(x(τ − 1))‖2] for all τ ∈ {0, 1, 2, . . .}. Summing over
τ ∈ {0, 1, . . . , t− 1} yields

t−1∑
τ=0

∆(τ) +

t−1∑
τ=0

f(x(τ)) ≤ tf(x∗) + α

t−1∑
τ=0

[‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖2]

+
1

2

t−1∑
τ=0

[‖g(x(τ))‖2 − ‖g(x(τ − 1))‖2].

Recalling that ∆(τ) = L(τ + 1)− L(τ) and simplifying summations yields

L(t)− L(0) +

t−1∑
τ=0

f(x(τ))

≤tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 +
1

2
‖g(x(t− 1))‖2 − 1

2
‖g(x(−1))‖2.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Rearranging terms; and substituting L(0) = 1
2‖Q(0)‖2 and L(t) = 1

2‖Q(t)‖2 yields

t−1∑
τ=0

f(x(τ))

≤tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 +
1

2
‖g(x(t− 1))‖2

− 1

2
‖g(x(−1))‖2 +

1

2
‖Q(0)‖2 − 1

2
‖Q(t)‖2

(a)

≤ tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 +
1

2
‖g(x(t− 1))‖2 − 1

2
‖Q(t)‖2,

(12)

where (a) follows from the fact that ‖Q(0)‖ ≤ ‖g(x(−1))‖, i.e., part 3 in Lemma 3.
Next, we present the proof of both parts:
1. This part follows from the observation that the equation (12) can be further

simplified as

t−1∑
τ=0

f(x(τ))
(a)

≤ tf(x∗) + α‖x∗ − x(−1)‖2 +
1

2
‖g(x(t− 1))‖2 − 1

2
‖Q(t)‖2

(b)

≤tf(x∗) + α‖x∗ − x(−1)‖2,

where (a) follows by ignoring the non-positive term −α‖x∗ − x(t − 1)‖2 on
the right side and (b) follows from the fact that ‖Q(t)‖ ≥ ‖g(x(t− 1))‖, i.e.,
part 3 in Lemma 3.

2. This part follows by rewriting the equation (12) as

t−1∑
τ=0

f(x(τ))

≤tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 +
1

2
‖g(x(t− 1))− g(x∗) + g(x∗)‖2

− 1

2
‖Q(t)‖2

=tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 +
1

2
‖g(x(t− 1))− g(x∗)‖2

+ gT (x∗)[g(x(t− 1))− g(x∗)] +
1

2
‖g(x∗)‖2 − 1

2
‖Q(t)‖2

(a)

≤ tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 +
1

2
‖g(x(t− 1))− g(x∗)‖2

+ ‖g(x∗)‖‖g(x(t− 1))− g(x∗)‖+
1

2
‖g(x∗)‖2 − 1

2
‖Q(t)‖2

(b)

≤tf(x∗) + α‖x∗ − x(−1)‖2 − α‖x∗ − x(t− 1)‖2 +
1

2
β2‖x∗ − x(t− 1)‖2

+ β‖g(x∗)‖‖x∗ − x(t− 1)‖+
1

2
‖g(x∗)‖2 − 1

2
‖Q(t)‖2

=tf(x∗) + α‖x∗ − x(−1)‖2 −
(
α− 1

2
β2
)[
‖x∗ − x(t− 1)‖ − 1

2

β

α− 1
2β

2
‖g(x∗)‖

]2
+

α

2α− β2
‖g(x∗)‖2 − 1

2
‖Q(t)‖2

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

(c)

≤tf(x∗) + α‖x∗ − x(−1)‖2 +
α

2α− β2
‖g(x∗)‖2 − 1

2
‖Q(t)‖2,

where (a) follows from Cauchy-Schwarz inequality; (b) follows from the fact
that ‖g(x(t − 1)) − g(x∗)‖ ≤ β‖x∗ − x(t − 1)‖, which further follows from
the assumption that g(x) is Lipschitz continuous with modulus β; and (c)
follows from the fact that α > 1

2β
2.

Theorem 1 (Objective Value Violations). Let x∗ be an optimal solution of the
problem (1)-(3). If α ≥ 1

2β
2 in Algorithm 1, for all t ≥ 1, we have

f(x(t)) ≤ f(x∗) +
α

t
‖x∗ − x(−1)‖2,

where β is defined in Assumption 1.

Proof. Fix t ≥1. By part 1 in Lemma 6, we have

t−1∑
τ=0

f(x(τ)) ≤ tf(x∗) + α‖x∗ − x(−1)‖2

⇒1

t

t−1∑
τ=0

f(x(τ)) ≤ f(x∗) +
α

t
‖x∗ − x(−1)‖2.

Since x(t) = 1
t

∑t−1
τ=0 x(τ) and f(x) is convex, by Jensen’s inequality it follows

that

f(x(t)) ≤ 1

t

t−1∑
τ=0

f(x(τ)).

The above theorem shows that the error gap between f(x(t)) and the optimal
value f(x∗) is at most O(1/t). This holds for any initial guess vector x(−1) ∈ X .
Of course, choosing x(−1) close to x∗ is desirable because it reduces the coefficient
α‖x∗ − x(−1)‖2.

3.3. Constraint Violations.

Lemma 7. Let Q(t), t ∈ {0, 1, . . .} be the sequence generated by Algorithm 1. For
any t ≥ 1,

Qk(t) ≥
t−1∑
τ=0

gk(x(τ)),∀k ∈ {1, 2, . . . ,m}.

Proof. Fix k ∈ {1, 2, . . . ,m} and t ≥ 1. For any τ ∈ {0, . . . , t−1} the update rule
of Algorithm 1 gives:

Qk(τ + 1) = max{−gk(x(τ)), Qk(τ) + gk(x(τ))}
≥ Qk(τ) + gk(x(τ)).

Hence, Qk(τ + 1) − Qk(τ) ≥ gk(x(τ)). Summing over τ ∈ {0, . . . , t − 1} and using
Qk(0) ≥ 0 gives the result.

Lemma 8. Let x∗ be an optimal solution of the problem (1)-(3) and λ∗ be a
Lagrange multiplier vector satisfying Assumption 2. Let x(t),Q(t), t ∈ {0, 1, . . .} be
sequences generated by Algorithm 1. Then,

t−1∑
τ=0

f(x(τ)) ≥ tf(x∗)− ‖λ∗‖‖Q(t)‖, ∀t ≥ 1.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Proof. The proof is similar to a related result in [23] for the DPP algorithm.
Define Lagrangian dual function q(λ) = min

x∈X
{f(x) +

∑m
k=1 λkgk(x)}. For all τ ∈

{0, 1, . . .}, by Assumption 2, we have

f(x∗) = q(λ∗)
(a)

≤ f(x(τ)) +

m∑
k=1

λ∗kgk(x(τ)),

where (a) follows the definition of q(λ∗). Thus, we have

f(x(τ)) ≥ f(x∗)−
m∑
k=1

λ∗kgk(x(τ)),∀τ ∈ {0, 1, . . .}.

Summing over τ ∈ {0, 1, . . . , t− 1} yields

t−1∑
τ=0

f(x(τ)) ≥tf(x∗)−
t−1∑
τ=0

m∑
k=1

λ∗kgk(x(τ))

=tf(x∗)−
m∑
k=1

λ∗k

[t−1∑
τ=0

gk(x(τ))
]

(a)

≥ tf(x∗)−
m∑
k=1

λ∗kQk(t)

(b)

≥tf(x∗)− ‖λ∗‖‖Q(t)‖,

where (a) follows from Lemma 7 and the fact that λ∗k ≥ 0,∀k ∈ {1, 2, . . . ,m}; and (b)
follows from the Cauchy-Schwarz inequality.

Lemma 9. Let x∗ be an optimal solution of the problem (1)-(3) and λ∗ be a

Lagrange multiplier vector satisfying Assumption 2. If α > β2

2 in Algorithm 1, then
for all t ≥ 1, the virtual queue vector satisfies

‖Q(t)‖ ≤ 2‖λ∗‖+
√

2α‖x∗ − x(−1)‖+

√
α

α− 1
2β

2
‖g(x∗)‖,

where β is defined in Assumption 1.

Proof. Fix t ≥ 1. By part 2 in Lemma 6, we have

t−1∑
τ=0

f(x(τ)) ≤tf(x∗) + α‖x∗ − x(−1)‖2 +
α

2α− β2
‖g(x∗)‖2 − 1

2
‖Q(t)‖2.

By Lemma 8, we have

t−1∑
τ=0

f(x(τ)) ≥ tf(x∗)− ‖λ∗‖‖Q(t)‖.

Combining the last two inequalities and cancelling the common term tf(x∗) on both

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

sides yields

1

2
‖Q(t)‖2 −

(
α‖x∗ − x(−1)‖2 +

α

2α− β2
‖g(x∗)‖2

)
≤ ‖λ∗‖‖Q(t)‖

⇒
(
‖Q(t)‖ − ‖λ∗‖

)2 ≤ ‖λ∗‖2 + 2α‖x∗ − x(−1)‖2 +
α

α− 1
2β

2
‖g(x∗)‖2

⇒‖Q(t)‖ ≤ ‖λ∗‖+

√
‖λ∗‖2 + 2α‖x∗ − x(−1)‖2 +

α

α− 1
2β

2
‖g(x∗)‖2

(a)⇒‖Q(t)‖ ≤ 2‖λ∗‖+
√

2α‖x∗ − x(−1)‖+

√
α

α− 1
2β

2
‖g(x∗)‖,

where (a) follows from the basic inequality
√
a+ b+ c ≤

√
a +
√
b +
√
c for any

a, b, c ≥ 0.

Theorem 2 (Constraint Violations). Let x∗ be an optimal solution of the prob-

lem (1)-(3) and λ∗ be a Lagrange multiplier vector satisfying Assumption 2. If α > β2

2
in Algorithm 1, then for all t ≥ 1, the constraint functions satisfy

gk(x(t)) ≤ 1

t

(
2‖λ∗‖+

√
2α‖x∗ − x(−1)‖+

√
α

α− 1
2β

2
‖g(x∗)‖

)
,∀k ∈ {1, 2, . . . ,m},

where β is defined in Assumption 1.

Proof. Fix t ≥ 1 and k ∈ {1, 2, . . . ,m}. Recall that x(t) = 1
t

∑t−1
τ=0 x(τ). Thus,

gk(x(t))
(a)

≤ 1

t

t−1∑
τ=0

gk(x(τ))

(b)

≤ Qk(t)

t

≤ ‖Q(t)‖
t

(c)

≤ 1

t

(
2‖λ∗‖+

√
2α‖x∗ − x(−1)‖+

√
α

α− 1
2β

2
‖g(x∗)‖

)
,

where (a) follows from the convexity of gk(x), k ∈ {1, 2, . . . ,m} and Jensen’s inequal-
ity; (b) follows from Lemma 7; and (c) follows from Lemma 9.

3.4. Convergence Rate of Algorithm 1. The next theorem summarizes the
last two subsections.

Theorem 3. Let x∗ be an optimal solution of the problem (1)-(3) and λ∗ be a

Lagrange multiplier vector satisfying Assumption 2. If α > β2

2 in Algorithm 1, then
for all t ≥ 1, we have

f(x(t)) ≤f(x∗) +
α

t
‖x∗ − x(−1)‖2,

gk(x(t)) ≤1

t

(
2‖λ∗‖+

√
2α‖x∗ − x(−1)‖+

√
α

α− 1
2β

2
‖g(x∗)‖

)
,∀k ∈ {1, 2, . . . ,m},

where β is defined in Assumption 1. In summary, Algorithm 1 ensures error decays
like O(1/t) and provides an ε-approximate solution with convergence time O(1/ε).

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

4. Application: Decentralized Network Utility Maximization. This sec-
tion considers the application of Algorithm 1 to decentralized multipath network
utility maximization problems.

4.1. Decentralized Multipath Flow Control. Network flow control can be
formulated as the convex optimization of maximizing network utility subject to link
capacity constraints [8]. In this view, many existing TCP protocols can be interpreted
as distributed solutions to network utility maximization (NUM) problems [10].

In single path network flow control problems, if the utility functions are strictly
convex, work [11] shows that the dual subgradient algorithm (with convergence rate
O(1/

√
t)) can yield a distributed flow control algorithm. If the utility functions are

only convex but not necessarily strictly convex, the DPP algorithm (or dual subgra-
dient algorithm with primal averaging) can yield a distributed flow control algorithm
with an O(1/

√
t) convergence rate [15, 13, 17]. If utility functions are strongly convex,

a faster network flow control algorithm with an O(1/t) convergence rate is proposed
in [2]. A recent work [23] shows that the distributed network flow control based on
the DPP algorithm also has convergence rate O(1/t) if utility functions are strongly
convex. Other Newton method based distributed algorithms for network flow control
with strictly convex utility functions are considered in [22].

However, in multipath network flow control problems, even if the utility function
is strictly or strongly convex with respect to the source rate, it is no longer strictly
or strongly convex with respect to path rates. Thus, many of the above algorithms
requiring strict or strong convexity can no longer be applied. The DPP algorithm
can still be applied but the convergence rate is only O(1/

√
t). Distributed algorithms

based on the primal-dual subgradient method, also known as the Arrow-Hurwicz-
Uzawa subgradient method, have been considered in [20]. However, the convergence
rate3 of the primal-dual subgradient method for general convex programs without
strong convexity is known to be O(1/

√
t) [14].

As shown in the previous sections, Algorithm 1 has an O(1/t) convergence rate
for general convex programs and yields a distributed algorithm if the objective func-
tion and constraint functions are separable. The next subsection applies Algorithm 1
to the multipath network flow control problem. The resulting algorithm has struc-
tural properties and implementation characteristics similar to the subgradient-based
algorithm of [10] and to the DPP algorithm of [23], but has additional decision vari-
ables due to the multipath formulation. (The algorithms in [10, 23] rely on strict and
strong convexity of the objective function, respectively, and apply only to single path
situations.)

4.2. Decentralized Multipath Flow Control Based on Algorithm 1. Sup-
pose there are S sources enumerated by S = {1, 2, . . . , S} and L links enumerated
by L = {1, 2, . . . , L}. Each link l ∈ L has a link capacity of cl bits/slot. Each
source sends data from a specific origin to a specific destination, and has multiple
path options. The paths for each source can use overlapping links, and they can also
overlap with paths of other sources. Further, two distinct sources can have identical
paths. However, it is useful to give distinct path indices to paths associated with each
source (even if their corresponding paths are physically the same). Specifically, for
each source s, define Ps as the set of path indices used by source s. The index sets

3Similar to the dual subgradient method, the primal-dual subgradient method has an O(1/
√
t)

convergence rate for general convex programs in the sense that O(1/ε2) iterations are required to
obtain an ε-approximate solution. However, the primal-dual subgradient method does not have
vanishing errors.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

P1, . . . ,PS are disjoint and P1 ∪ P2 ∪ · · · ∪ PS = K = {1, 2, . . . ,K}, where K is the
number of path indices.

For each source s, let Us(ys) be a real-valued, concave, continuous and nonde-
creasing utility function defined for ys ≥ 0. This represents the satisfaction source s
receives by communicating with a total rate of ys, where the total rate sums over all
paths it used.

Note that different paths can share links in common. Define Dl ⊆ K as the
set of paths that use link l and Ek ⊆ L as the set of links used by path k. Let
x = [x1, . . . , xK]T be the vector that specifies the flow rate on each path; and y =
[y1, . . . , yS]T be the vector that specifies the rate of each source.

The goal is to allocate flow rates on each path so that no link is overloaded and
network utility is maximized. This multipath network utility maximization problem
can be formulated as follows:

maximize

S∑
s=1

Us(ys)(13)

subject to
∑
k∈Dl

xk ≤ cl,∀l ∈ L,(14)

ys =
∑
k∈Ps

xk,∀s ∈ S,(15)

0 ≤ xk ≤ xmax
k ,∀k ∈ K,(16)

0 ≤ ys ≤ ymax
s ,∀s ∈ S,(17)

where xmax and ymax are the allowed maximum path rate and maximum source rate,
respectively. The expression (13) represents the network utility; inequality (14) spec-
ifies the link capacity constraints; and equality (15) enforces the definition of ys. The
linear equality constraints (15) can be formally treated by writing each one as two
linear inequality constraints. However, since the utility functions Us(·) are nonde-
creasing and seek to maximize the ys values, it is clear that the above problem is
equivalent to the following:

minimize −
S∑
s=1

Us(ys)(18)

subject to
∑
k∈Dl

xk ≤ cl,∀l ∈ L,(19)

ys ≤
∑
k∈Ps

xk,∀s ∈ S,(20)

0 ≤ xk ≤ xmax
k ,∀k ∈ K,(21)

0 ≤ ys ≤ ymax
s ,∀s ∈ S.(22)

Note that the constraints (19)-(20) are linear and can be written as A

[
x
y

]
≤[

c
0

]
, where A is an (L+S)×(K+S) matrix of which each entry is in {0,±1}. This

inequality constraint A

[
x
y

]
≤
[

c
0

]
can be treated as the inequality constraint

(2) defined as g(z) = Az − b ≤ 0 with z =

[
x
y

]
and b =

[
c
0

]
in the general

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

convex program (1)-(3). The box constraints (21)-(22) can be treated as the set
constraint (3) in the general convex program (1)-(3). Thus, the multipath network
utility maximization problem (18)-(22) is a special case of the general convex program
(1)-(3).

The Lipschitz continuity of g(z) is summarized in the next lemma.

Lemma 10. If the constraints (19)-(20) are written as g(z) ≤ 0, then we have
1. The function g(z) is Lipschitz continuous with modulus

β ≤
√
S +K +

∑
k∈K

dk,

where dk is the length, i.e., number of hops, of path k ∈ K.
2. The function g(z) is Lipschitz continuous with modulus β ≤

√
(L+ 1)K + S.

Proof.
1. Recall that g(z) = Az−b is Lipschitz continuous with modulus β = σmax(A),

where σmax(A) is the maximum singular value of matrix A, and a simple
upper bound of σmax(A) is the Frobenius norm given by ‖A‖F = tr(ATA) =√∑

i,j A
2
ij . Note that A can be written as

A =

[
R 0L×S
−T IS

]
,

where R is a {0, 1} matrix of size L×K , 0L×S is an L× S zero matrix, T
is a {0, 1} matrix of size S × K and IS is an S × S identity matrix. Note
that the (l, k)-th entry of R is 1 if and only if path k uses link l; the (s, k)-th
entry of T is 1 if and only if path k is a path for source s, i.e, k ∈ Ps. Matrix
R has

∑
k∈K dk non-zero entries since each column has exactly dk non-zero

entries. Matrix T has K non-zero entries since there are in total K network
paths. Thus, matrix A in total has S+K +

∑
k∈K dk non-zero entries whose

absolute values are equal to 1. It follows that β ≤
√
S +K +

∑
k∈K dk.

2. This part follows from the fact that the length of each path is at most L.

Note that the second bound in the above lemma is more loose than the first one
but holds regardless of the flow path configurations in the network. A straightforward
application of Algorithm 1 yields the following decentralized network flow control
algorithm described in Algorithm 2. Similar to the flow control based on the dual
subgradient algorithm, Algorithm 2 is decentralized and can be easily implemented
within the current TCP protocols [10].

By Theorem 3, if we choose α ≥ 1
2

(
S +K +

∑
k∈K dk

)
, then for any t ≥ 1,

S∑
s=1

Us(ys(t)) ≥
S∑
s=1

Us(y
∗
s)−O(1/t),(23) ∑

k∈Dl

xk(t) ≤ cl +O(1/t), ∀l ∈ L,(24)

ys(t) ≤
∑
k∈Ps

xk(t) +O(1/t), ∀s ∈ S,(25)

where (x∗,y∗) is an optimal solution of the problem (18)-(22). Note that if Algo-
rithm 2 has been run for a sufficiently long time and we are satisfied with the current

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Algorithm 2

• Initialization: Let xk(−1) ∈ [0, xmax
k],∀k ∈ K be arbitrary, ys(−1) ∈

[0, ymax
s],∀s ∈ S be arbitrary, Ql(0) = max{0,−

∑
k∈Dl

xk(−1) + cl},∀l ∈ L,
Yl(0) = Ql(0) +

∑
k∈Dl

xk(−1)− cl,∀l ∈ L, Rs(0) = max{0,
∑
k∈Ps

xk(−1)−
ys(−1)},∀s ∈ S and Zs(0) = Rs(0) + ys(−1)−

∑
k∈Ps

xk(−1),∀s ∈ S.
• Each link l’s algorithm: At each time t ∈ {0, 1, . . .}, link l does the following:

1. Receive the path rates xk(t) that use link l. Update Ql(t) via:

Ql(t+ 1) = max
{
−
∑
k∈Dl

xk(t) + cl, Ql(t) +
∑
k∈Dl

xk(t)− cl
}
.

2. The price of this link is given by Yl(t+1) = Ql(t+1)+
∑
k∈Dl

xk(t)−cl.
3. Communicate the link price Yl(t+ 1) to sources that use link l.

• Each source s’s algorithm: At each time t ∈ {0, 1, . . .}, source s does the
following:

1. Receive from the network the link prices Yl(t) for all links l that are used
by any path of source s.

2. Update the path rates xk, k ∈ Ps by

xk(t) = argmin
0≤xk≤xmax

k

{[∑
l∈Ek

Yl(t)− Zs(t)
]
xk + α(xk − xk(t− 1))2

}
=
[
xk(t− 1)− 1

2α

(∑
l∈Ek

Yl(t)− Zs(t)
)]xmax

k

0
,

where [z]ba = min{max{z, a}, b}.
3. Communicate the path rates xk(t), k ∈ Ps to all links that are used by

path k.
4. Update the source rate ys(t) by

ys(t) = argmin
0≤ys≤ymax

s

{
− Us(ys) + Zs(t)ys + α(ys − ys(t− 1))2

}
,

which usually has a closed form solution for differentiable utilities by
taking derivatives.

5. Update virtual queue Rs(t) and source price Zs(t) locally by

Rs(t+ 1) = max
{
− ys(t) +

∑
k∈Ps

xk(t), Rs(t) + ys(t)−
∑
k∈Ps

xk(t)
}
,

Zs(t+ 1) = Rs(t+ 1) + ys(t)−
∑
k∈Ps

xk(t).

performance, then we can fix x = 1
t

∑t−1
τ=0 x(τ) and y = 1

t

∑t−1
τ=0 y(τ) such that the

performance is still within O(1/t) sub-optimality for all future time.

4.3. Decentralized Joint Flow and Power Control. Since Algorithm 1 al-
lows for general nonlinear convex constraint functions, it can also be applied to solve
the joint flow and power control problem. In this case, the capacity of each link l is
not fixed but depends concavely on a power allocation variable pl. Assuming each

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

link capacity is logarithmic in pl results in the following problem:

maximize

S∑
s=1

Us(ys)−
L∑
l=1

Vl(pl)(26)

subject to
∑
k∈Dl

xk ≤ log(1 + pl),∀l ∈ L,(27)

ys ≤
∑
k∈Ps

xk,∀s ∈ S,(28)

0 ≤ xk ≤ xmax
k ,∀k ∈ K,(29)

0 ≤ ys ≤ ymax
s ,∀s ∈ S,(30)

0 ≤ pl ≤ pmax
l ,∀l ∈ L,(31)

where pl is the power allocated at link l, log(1 +pl) is the corresponding link capacity
as a function of pl, and Vl(pl) is the associated power cost (assumed to be a convex
function of pl). A decentralized joint flow and power control algorithm for this problem
can be similarly developed by applying Algorithm 1.

5. Numerical Results. This section considers numerical experiments to verify
the convergence rate results shown in this paper.

5.1. Decentralized Multiplath Flow Control. Consider the simple multi-
path network flow problem described in Figure 1. Assume each link has capacity
1. Let y1, y2 and y3 be the data rates of source 1, 2 and 3; x1, x2, x3, x4, x5, x6 and
x7 be the data rates of the paths indicated in the figure; and the network utility be
maximizing log(y1) + 2 log(y2) + 2 log(y3). The NUM problem can be formulated as
follows:

maximize log(y1) + 2 log(y2) + 2 log(y3)

subject to Rx ≤ c,

y ≤ Tx,

0 ≤ xi ≤ xmax
i , i ∈ {1, 2, . . . , 4},

0 ≤ yi ≤ ymax
i , i ∈ {1, 2, 3},

where R =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

, c =

1
1
1
1
1
1
1
1
1

, T =

 1 1 0 0 0 0 0
0 0 1 1 1 0 0
0 0 0 0 0 1 1

.

The optimal value to this NUM problem is f∗ = 1.65687.
To verify the convergence of Algorithm 2, Figure 2 shows the values of objective

and constraint functions yielded by Algorithm 2 with α = 1
2

(
K+S+

∑
k∈K dk

)
+1 = 10

and x(−1) = 0. (By writing constraints Rx ≤ c and y ≤ Tx in the compact form
Az ≤ b, it can be checked that β = σmax(A) = 2.4307. If we choose a smaller α, e.g.,
α = 1

2β
2 + 1 = 3.9543, then Algorithm 2 converges even faster. In this simulation,

we choose a loose α whose value can be easily estimated from Lemma 10 without

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

knowing the detailed network topology.) We also compare our algorithm with the
dual subgradient algorithm (with primal averaging) with step size 0.01 in [13]. (Or
equivalently, the DPP algorithm with V = 100 in [15, 17, 23].) Recall that the dual
subgradient algorithm in [15, 13, 17, 23] does not converge to an exact optimal solution
but only converges to an approximate solution with an error level determined by the
step size. In contrast, our algorithm can eventually converge to the exact optimality.
Figure 2 shows that Algorithm 2 converges faster than the dual subgradient algorithm
with primal averaging.

To verify the convergence rate of Algorithm 2, Figure 3 plots f(x(t)) − f∗, all
constraint values, function 1/t, and bounds from Theorem 3 with both x-axis and
y-axis in log10 scales. It can be observed that the curves of f(x(t)) − f∗ and all the
source rate constraint values are parallel to the curve of 1/t for large t. Note that
all the link capacity constraints are satisfied early (i.e., negative), and hence are not
drawn in log10 scales. Figure 3 verifies that the error of Algorithm 2 decays like O(1/t)
and suggests that it is actually Θ(1/t) for this multipath NUM problem.

l1

l2

l3

l4

l5

l6

l7

l8

x1

x2

x3

x4

x5

x6

x7

l9

source	2	

source	3	

source	1	

Fig. 1. A simple multipath NUM problem with 3 sources and 7 paths.

5.2. Decentralized Joint Flow and Power Control. Consider the joint flow
and power control over the same network described in Figure 1. We assume the power
cost of each link is given by Vl(pl) = 0.25pl. The optimal value of this joint flow and
power control problem is f∗ = −0.521318.

To verify the convergence of Algorithm 1, Figure 4 shows the values of objective
and constraint functions yielded by Algorithm 1 with α = 10, x(−1) = 0, y(−1) = 0
and p(−1) = 0. (In fact, by writing constraints Rx ≤ log(1 + p) and y ≤ Tx in the
compact form g(z) ≤ 0, it can be checked that β = 2.5229. If we choose a smaller α,
e.g., α = 1

2β
2+1 = 4.1826, then Algorithm 1 converges even faster.) We also compare

our algorithm with the dual subgradient algorithm (with primal averaging) with step
size 0.01 in [15, 13, 17, 23]. Figure 4 shows that Algorithm 1 converges faster than
the dual subgradient algorithm with primal averaging.

To verify the convergence rate of Algorithm 1, Figure 5 plots f(x(t)) − f∗, all
constraint values, function 1/t, and bounds from Theorem 3 with both x-axis and
y-axis in log10 scales. It can be observed that the curves of f(x(t)) − f∗ and all the
source rate constraint values are parallel to the curve of 1/t for large t.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Iterations: t
0 500 1000 1500 2000 2500 3000 3500 4000

O
bj

ec
tiv

e
Va

lu
e

-6
-4
-2
0
2
4
6

���� �������	 ���
������ �� ������
� ������

Iterations: t
0 500 1000 1500 2000 2500 3000 3500 4000

Li
nk

 C
ap

ac
ity

 C
on

s
Va

lu
e

-1
0
1
2
3
4

���� �������	 ���
������ �� ���� ������� �����������

Iterations: t
0 500 1000 1500 2000 2500 3000 3500 4000So

ur
ce

 R
at

e
Co

ns
 V

al
ue

-0.5
0

0.5
1

1.5
2

2.5
���� �������	 ���
������ �� ����� ���� �����������

�������
�������������

!��� ������!���� ���� ������ �
�������

��������� "# ��
��$

!��� ������!���� ���� ������ �
������� "# ��
��$

��������� "% ��
��$

!��� ������!���� ���� ������ �
������� "% ��
��$

Fig. 2. The convergence of Algorithm 2 and the dual subgradient algorithm with primal aver-
aging for a multipath flow control problem.

5.3. Quadratic Programs. Consider the following quadratic program

min xTPx + cTx

s.t. xTQx + dTx ≤ e
xmin ≤ x ≤ xmax

where P and Q are positive semidefinite to ensure the convexity of the quadratic
program.

We randomly generate a large scale example where x ∈ R100, P ∈ R100×100 is
diagonal with entries from uniform [0, 4], c ∈ R100 with entries from uniform [−15, 20],
Q ∈ R100×100 is diagonal with entries from uniform [0, 1], d ∈ R100 with entries from
uniform [−1, 1], e is a scalar from uniform [4, 5], xmin = 0 and xmax = 1. Note that
Algorithm 1 and the dual subgradient algorithm (with primal averaging) can deal with
general semidefinite positive matrices P and Q. However, if P and Q are diagonal or
block diagonal, then the primal update in both algorithms can be decomposed into
independent smaller problems and hence has extremely low complexity.

To verify the convergence of Algorithm 1, Figure 6 shows the values of objective
and constraint functions yielded by Algorithm 1 with α = 1

2β
2 + 1, where β the is

Lipschitz modulus of the constraint function, and x(−1) = xmin. We also compare
our algorithm with the dual subgradient algorithm (with primal averaging) with step

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Iterations: t
100 101 102 103 104 105 106

Co
ns

tra
in

t/O
bj

ec
tiv

e
Vi

ol
at

io
ns

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

Flow Control: Convergence Rate of Algorithm 2 v.s. O(1/t)

f $! f(x(t))

source rate constraints (3 curves)

1=t

upper bound of f $! f(x(t)) from Thm 3

upper bound of constraint violations from Thm 3

curves are parallel for large t

Fig. 3. The convergence rate of Algorithm 2 for a multipath flow control problem.

size 0.01 in [15, 13, 17, 23]. Figure 6 shows that Algorithm 1 converges faster than
the dual subgradient algorithm with primal averaging.

To verify the convergence rate of Algorithm 1, Figure 7 plots f(x(t))−f∗, function
1/t, and the bound from Theorem 3 with both x-axis and y-axis in log10 scales. It
can be observed that the curves of f(x(t)) − f∗ and all the source rate constraint
values are parallel to the curve of 1/t for large t. Note that the constraint violation
is not plotted since the constraint function is satisfied for all iterations as observed in
Figure 6.

6. Conclusions. This paper proposes a novel but simple algorithm to solve con-
vex programs with a possibly non-differentiable objective function and Lipschitz con-
tinuous constraint functions. The new algorithm has a parallel implementation when
the objective function and constraint functions are separable. The convergence rate
of the proposed algorithm is shown to be O(1/t). This is faster than the O(1/

√
t) con-

vergence rate of the dual subgradient algorithm with primal averaging. The ADMM
algorithm has the same O(1/t) convergence rate but can only deal with linear equality
constraint functions. The new algorithm is further applied to solve multipath net-
work flow control problems and yields a decentralized flow control algorithm which
converges faster than existing dual subgradient or primal-dual subgradient based flow
control algorithms. The O(1/t) convergence rate of the proposed algorithm is also
verified by numerical experiments.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Iterations: t
0 500 1000 1500 2000 2500 3000 3500 4000

O
bj

ec
tiv

e
Va

lu
e

-6
-4
-2
0
2
4
6

Joint Flow and Power Control: Convergence of Objective Values

Iterations: t
0 500 1000 1500 2000 2500 3000 3500 4000

Li
nk

 C
ap

ac
ity

 C
on

s
Va

lu
e

0

2

4

6
Joint Flow and Power Control: Convergence of Link Capacity Constraints

Iterations: t
0 500 1000 1500 2000 2500 3000 3500 4000So

ur
ce

 R
at

e
Co

ns
 V

al
ue

-1
0
1
2
3
4

Joint Flow and Power Control: Convergence of Source Rate Constraints

optimal value
Algorithm 1

dual subgradient with primal averaging

Algorithm 1 (9 curves)

dual subgradient with primal averaging(9 curves)

Algorithm 1 (3 curves)

dual subgradient with primal averaging (3 curves)

Fig. 4. The convergence of Algorithm 1 and the dual subgradient algorithm with primal aver-
aging for a multipath joint flow and power control problem.

REFERENCES

[1] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms, Wiley-Interscience, 2006.

[2] A. Beck, A. Nedic, A. Ozdaglar, and M. Teboulle, An O(1/k) gradient method for network
resource allocation problems, IEEE Transactions on Control of Network Systems, 1 (2014),
pp. 64–73.

[3] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, second ed., 1999.
[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and

statistical learning via the alternating direction method of multipliers, Foundations and
Trends in Machine Learning, 3 (2011), pp. 1–122.

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[6] B. He and X. Yuan, On the O(1/n) convergence rate of the Douglas-Rachford alternating

direction method, SIAM Journal on Numerical Analysis, 50 (2012), pp. 700–709.
[7] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer,

2001.
[8] F. P. Kelly, A. K. Maulloo, and D. K. Tan, Rate control for communication networks:

Shadow prices, proportional fairness and stability, Journal of the Operational Research
Society, 49 (1998), pp. 237–252.

[9] T.-Y. Lin, S.-Q. Ma, and S.-Z. Zhang, On the sublinear convergence rate of multi-block
ADMM, Journal of the Operations Research Society of China, 3 (2015), pp. 251–274.

[10] S. H. Low, A duality model of TCP and queue management algorithms, IEEE/ACM Transac-
tions on Networking, 11 (2003), pp. 525–536.

[11] S. H. Low and D. E. Lapsley, Optimization flow control—I: basic algorithm and convergence,
IEEE/ACM Transactions on Networking, 7 (1999), pp. 861–874.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Iterations: t
100 101 102 103 104 105 106

Co
ns

tra
in

t/O
bj

ec
tiv

e
Vi

ol
at

io
ns

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103
����� ���� 	�
 ���� ������� ���������� �	�� �� �������� � ���� ������

� $! ��x����

link capacity constraints (9 curves)

source rate constraints (3 curves)

���

� � !���
 �� � $! ��x���� ��� "�� #

� � !���
 �� �����	��� ����	����� ��� "�� #

curves are parallel for large t

Fig. 5. The convergence rate of Algorithm 1 for a multipath joint flow and power control problem.

[12] I. Necoara and V. Nedelcu, Rate analysis of inexact dual first-order methods application to
dual decomposition, IEEE Transactions on Automatic Control, 59 (2014), pp. 1232–1243.

[13] A. Nedić and A. Ozdaglar, Approximate primal solutions and rate analysis for dual subgra-
dient methods, SIAM Journal on Optimization, 19 (2009), pp. 1757–1780.

[14] A. Nedić and A. Ozdaglar, Subgradient methods for saddle-point problems, Journal of Opti-
mization Theory and Applications, 142 (2009), pp. 205–228.

[15] M. J. Neely, Distributed and secure computation of convex programs over a network of con-
nected processors, in DCDIS Conference Guelph, July 2005.

[16] M. J. Neely, Stochastic Network Optimization with Application to Communication and Queue-
ing Systems, Morgan & Claypool Publishers, 2010.

[17] M. J. Neely, A simple convergence time analysis of drift-plus-penalty for stochastic optimiza-
tion and convex programs, arXiv:1412.0791, (2014).

[18] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Springer Sci-
ence & Business Media, 2004.

[19] N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends in Optimization, 1
(2013), pp. 123–231.

[20] W.-H. Wang, M. Palaniswami, and S. H. Low, Optimal flow control and routing in multi-path
networks, Performance Evaluation, 52 (2003), pp. 119–132.

[21] E. Wei and A. Ozdaglar, On the O(1/k) convergence of asynchronous distributed alternating
direction method of multipliers, in Proceedings of IEEE Global Conference on Signal and
Information Processing, 2013.

[22] E. Wei, A. Ozdaglar, and A. Jadbabaie, A distributed Newton method for network utility
maximization–I: algorithm, IEEE Transactions on Automatic Control, 58 (2013), pp. 2162–
2175.

[23] H. Yu and M. J. Neely, On the convergence time of the drift-plus-penalty algorithm for

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

Iterations: t
0 500 1000 1500 2000 2500 3000 3500 4000

O
bj

ec
tiv

e
Va

lu
e

-200

-150

-100

-50

Quadratic Program: Convergence of Objective Values

Iterations: t
0 500 1000 1500 2000 2500 3000 3500 4000

Co
ns

tra
in

t V
al

ue

-4
-2
0
2
4
6
8

10
12

Quadratic Program: Convergence of Constraint Violations

Algorithm 1

optimal value
dual subgradient with primal averaging

Algorithm 1

dual subgradient with primal averaging

Fig. 6. The convergence of Algorithm 1 and the dual subgradient algorithm with primal aver-
aging for a quadratic program.

strongly convex programs, in Proceedings of IEEE Conference on Decision and Control
(CDC), 2015.

[24] H. Yu and M. J. Neely, A primal-dual type algorithm with the O(1/t) convergence rate for
large scale constrained convex programs, in Proceedings of IEEE Conference on Decision
and Control (CDC), 2016.

SIAM JOURNAL ON OPTIMIZATION, VOL. 27, NO. 2

100 101 102 103 104 10510-5

10-4

10-3

10-2

10-1

100

101

102

103

104
Quadratic Program: Convergence Rate of Algorithm 1 v.s. O(1/t)

1=t

f(x(t))! f $
curves are parallel for large t

upper bound of f(x(t))! f $ from Thm 3

Fig. 7. The convergence rate of Algorithm 1 for a quadratic program.

	Introduction
	New Algorithm
	The Dual Subgradient Algorithm and the Drift-Plus-Penalty Algorithm
	The ADMM Algorithm
	Decentralized Multipath Network Flow Control Problems

	Preliminaries and Basic Analysis
	Preliminaries
	Properties of the Virtual Queues
	Properties of the Drift

	Convergence Rate Analysis of alg:dpp
	An Upper Bound of the Drift-Plus-Penalty Expression
	Objective Value Violations
	Constraint Violations
	Convergence Rate of alg:dpp

	Application: Decentralized Network Utility Maximization
	Decentralized Multipath Flow Control
	Decentralized Multipath Flow Control Based on alg:dpp
	Decentralized Joint Flow and Power Control

	Numerical Results
	Decentralized Multiplath Flow Control
	Decentralized Joint Flow and Power Control
	Quadratic Programs

	Conclusions
	References

