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We consider multiple parallel Markov decision processes (MDPs) coupled by global constraints, where the time

varying objective and constraint functions can only be observed after the decision is made. Special attention

is given to how well the decision maker can perform in T slots, starting from any state, compared to the best

feasible randomized stationary policy in hindsight. We develop a new distributed online algorithm where

each MDP makes its own decision each slot after observing a multiplier computed from past information.

While the scenario is significantly more challenging than the classical online learning context, the algorithm

is shown to have a tight O (
√
T ) regret and constraint violations simultaneously. To obtain such a bound, we

combine several new ingredients including ergodicity and mixing time bound in weakly coupled MDPs, a new

regret analysis for online constrained optimization, a drift analysis for queue processes, and a perturbation

analysis based on Farkas’ Lemma.
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1 INTRODUCTION
This paper considers online constrained Markov decision processes (OCMDP) where both the

objective and constraint functions can vary each time slot after the decision is made. We assume a

slotted time scenario with time slots t ∈ {0, 1, 2, . . .}. The OCMDP consists of K parallel Markov

decision processes with indices k ∈ {1, 2, . . . ,K }. The k-th MDP has state space S (k )
, action

space A (k )
, and transition probability matrix P (k )

a which depends on the chosen action a ∈ A (k )
.

Specifically, P (k )
a = (P (k )

a (s, s ′)) where

P (k )
a (s, s ′) = Pr

(
s (k )t+1
= s ′ ��� s

(k )
t = s, a (k )t = a

)
,

where s (k )t and a (k )t are the state and action for system k on slot t . We assume that both the state

space and the action space are finite for all k ∈ {1, 2, · · · ,K }.
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After each MDP k ∈ {1, . . . ,K } makes the decision at time t (and assuming the current state is

s (k )t = s and the action is a (k )t = a), the following information is revealed:

(1) The next state s (k )t+1
.

(2) A penalty function f (k )t (s,a) that depends on the current state s and the current action a.

(3) A collection ofm constraint functions д(k )
1,t (s,a), . . . ,д

(k )
m,t (s,a) that depend on s and a.

The functions f (k )t and д(k )i,t are all bounded mappings from S (k ) ×A (k )
to R and represent different

types of costs incurred by system k on slot t (depending on the current state and action). Note that

in our model, the functions f (k )t are arbitrary time-varying processes with no assumed probability

structure. The constraint functions д(k )i,t are time-varying but are assumed to be i.i.d. over slots with

unknown distributions.

One concrete example of the above model is a multi-server data center, where the different

systems k ∈ {1, . . . ,K } can represent different servers, the penalty function for a particular server k
can represent monetary expenditure for the power on that server, whose per unit price can change

arbitrarily over time, and the constraints can represent service rate requirements on these servers

to balance the job arrivals. Coupling among the server systems comes from using all of them to

collectively support a common stream of arriving jobs. We will detail this example in Section 1.1.

A key aspect of this general problem is that the functions f (k )t and д(k )i,t are unknown until after

the slot t decision is made. Thus, the precise costs incurred by each system are only known at the

end of the slot. For any fixed time horizon ofT slots, the overall penalty and constraint accumulation

resulting from a policy P is:

FT (d0,P ) := E*
,

T∑
t=1

K∑
k=1

f (k )t

(
a (k )t , s

(k )
t

) ������
d0,P+

-
, (1)

and

Gi,T (d0,P ) := E*
,

T∑
t=1

K∑
k=1

д(k )i,t

(
a (k )t , s

(k )
t

) ������
d0,P+

-
,

where d0 represents a given distribution on the initial joint state vector (s (1)
0
, · · · , s (K )

0
). Note that

(a (k )t , s
(k )
t ) denotes the state-action pair of the kth MDP, which is a pair of random variables

determined by d0 and P . Define a constraint set

G := {(P,d0) : Gi,T (d0,P ) ≤ 0, i = 1, 2, · · · ,m}. (2)

Define the regret of a policy P with respect to a particular joint randomized stationary policy Π
along with an arbitrary starting state distribution d0 as:

FT (d0,P ) − FT (d0,Π),

The goal of OCMDP is to choose a policy P so that both the regret and constraint violations

grow sublinearly with respect to T , where regret is measured against all feasible joint randomized

stationary policies Π. An important feature of this “weakly coupled” MDP structure is that, while the

total state space (s (1), · · · , s (K ) ) grows exponentially in the number of subsystems K , our solution
can be implemented separately at each system i ∈ {1, ...,K } with complexity that depends only on

the size of the individual system state s (i ) , rather than the product of sizes across all systems.
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1.1 A motivating example
Consider a data center with a central controller and K servers (see Fig. 1). Jobs arrive randomly

and are stored in a queue to await service. The system operates in slotted time t ∈ {0, 1, 2, . . .} and
each server k ∈ {1, . . . ,K } is modeled as a 3-state MDP with states active, idle, and setup:
• Active: In this state the server is available to serve jobs. Server k incurs a time varying

electricity cost on every active slot, regardless of whether or not there are jobs to serve. It

has a control option to stay active or transition to the idle state.

• Idle: In this state no jobs can be served. This state has multiple sleep modes as control options,

each with different per-slot costs and setup times required for transitioning from idle to

active.

• Setup: This is a transition state between idle and active. No jobs can be served and there are

no control options. The setup costs and durations are (possibly constant) random variables

depending on the preceding chosen sleep mode.

The goal is to minimize the overall electricity cost subject to the constraint that the expected service

amount should be no less than the expected number of arrivals over any fixed time horizon T .
In a typical data center scenario, the performance of each server on a given slot is governed by

the current electricity price, which can be an arbitrary time-varying sequence that is unknown

beforehand, and the service rate, which can depend on the server state, service decision, and

unknown noise factors affecting service. This problem is challenging because:

• If one server is currently in a setup state, it has zero service rate and cannot make another deci-

sion until it reaches the active state (which typically takes more than one slot), whereas other

active servers can make decisions during this time. Thus, servers are acting asynchronously.

• The electricity price exhibits variation across time, location, and utility providers. Its behavior

is irregular and can be difficult to predict. As an example, Fig. 2 plots the average per 5

minute spot market price (between 05/01/2017 and 05/10/2017) at New York zone CENTRL

([1]). Servers in different locations can have different price offerings, and this piles up the

uncertainty across the whole system.

Despite these difficulties, this problem fits into the formulation of this paper: The electricity price

acts as the global penalty function, and stability of the queue can be treated as a global constraint

that the expected total number of arrivals is less than the expected service rate.

Fig. 1. Illustration of a data center server scheduling model.

A review on data server provision can be found in [14] and references therein. Prior data center

analysis often assumes the system has up-to-date information on service rates and electricity costs

(see, for example, [15] and [31]). On the other hand, work that treats outdated information (such as
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Fig. 2. A typical trace of electricity market price.

[23], [30]) generally does not consider the potential Markov structure of the problem. The current

paper treats the Markov structure of the problem and allows rate and price information to be

unknown and outdated.

1.2 Related work
• Online convex optimization (OCO): This concerns multi-round cost minimization with

arbitrarily-varying convex loss functions. Specifically, on each slot t the decision maker

chooses decisions x (t ) within a convex set X (before observing the loss function f t (x )) in
order to minimize the total regret compared to the best fixed decision in hindsight, expressed

as:

regret(T ) =
T∑
t=1

f t (x(t )) −min

x∈X

T∑
t=1

f t (x).

See [18] for an introduction to OCO. Zinkevich introduced OCO in [39] and shows that

an online projection gradient descent (OGD) algorithm achieves O (
√
T ) regret. This O (

√
T )

regret is proven to be the best in [19], although improved performance is possible if all convex

loss functions are strongly convex. The OGD decision requires to compute a projection of

a vector onto a set X. For complicated sets X with functional equality constraints, e.g.,

X = {x ∈ X0 : дk (x) ≤ 0,k ∈ {1, 2, . . . ,m}}, the projection can have high complexity. To

circumvent the projection, work in [8, 20, 24, 36] proposes alternative algorithms with simpler

per-slot complexity and that satisfy the inequality constraints in the long term (rather than on

every slot). Recently, new primal-dual type algorithms with low complexity are proposed in

[27, 35] to solve more challenging OCO with time-varying functional inequality constraints.

In particular, [35] also treats online convex optimization with stochastic i.i.d. constraints

but without any Markov structure. Thus, in the degenerate scenario where there is only one

state in the state-space S (k ), ∀k , our problem (1)-(2) can be solved via the method proposed

in [35]. However, there is no prior work that addresses the general constrained online MDP

problem.

• Online Markov decision processes: This extends OCO to allow systems with a more

complex Markov structure. This is similar to the setup of the current paper of minimizing the

expression (1), but does not have the constraint set (2). Unlike traditional OCO, the current

penalty depends not only on the current action and the current (unknown) penalty function,
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but on the current system state (which depends on the history of previous actions). Further,

the number of policies can grow exponentially with the sizes of the state and action spaces, so

that solutions can be computationally intensive. The work [12] develops an algorithm in this

context with O (
√
T ) regret. Extended algorithms and regularization methods are developed

in [10][16][38] to reduce complexity and improve dependencies on the number of states and

actions. Online MDP under bandit feedback (where the decision maker can only observe the

penalty corresponding to the chosen action) is considered in [28][38].

• Constrained MDPs: This aims to solve classical MDP problems with known cost functions

but subject to additional constraints on the budget or resources. Linear programming methods

for MDPs are found, for example, in [3], and algorithms beyond LP are found in [7][26].

Formulations closest to our setup appear in recent work on weakly coupled MDPs in [6][32]

that have known cost and resource functions.

• Reinforcement Learning (RL): This concerns MDPs with some unknown parameters

(such as unknown functions and transition probabilities). The conventional setup of RL is

different from constrained online MDP considered in this paper. Typically, RL considers

decision making in an unknown but fixed probability structure (formulated as an MDP with

unknown state spaces and/or unknown transmission probabilities). For example, prior work

may assume the same expected penalty is incurred whenever we have the same state and

same action. Methods for RL are developed in [2][4][9][21][29]. In contrast, the constrained

online MDP studied in this paper assumes that state spaces and the transmission probabilities

of the underlying MDPs are known to us, and deals with unknown and arbitrarily varying

penalty functions for which there is no assumed probability structure.

1.3 Our contributions
The current paper proposes a new framework for online MDPs with time varying constraints. Fur-

ther, it considers multiple MDP systems that are weakly coupled. While the scenario is significantly

more challenging than the original Zinkevich OGD context as well as other classical online learning

scenarios, the algorithm is shown to achieve tight O (
√
T ) regret in both the objective function

and the constraints, which ties the optimal O (
√
T ) regret for those simpler unconstrained OCO

problems. Along the way, we show the bound grows polynomially with the number of MDPs and

linearly with respect to the number of states and actions in each MDP (Theorem 5.6).

The rest of the paper is organized as follows: In Section 2 we provide preliminary assumptions,

facts and give some intuitions on the algorithm design (Section 2.5). In Section 3, we present our

new algorithm along with the intuitions and roadmap of the analysis. In Section 4, we prove the

regret and constraint violation bounds with respect to all randomized stationary policies starting

from their stationary state distributions. Section 5 extends the result in the previous section by

considering all randomized stationary policies starting from arbitrary states. Finally, we conclude

the paper in Section 6.

2 PRELIMINARIES
2.1 Basic Definitions
Throughout this paper, given an MDP with state space S and action space A, a policy P defines

a (possibly probabilistic) method of choosing actions a ∈ A at state s ∈ S based on the past

information. We start with some basic definitions of important classes of policies:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 12. Publication date: March 2018.
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Definition 2.1. For an MDP, a randomized stationary policy π defines an algorithm which,

whenever the system is in state s ∈ S, chooses an action a ∈ A according to a fixed conditional

probability function π (a |s ), defined for all a ∈ A and s ∈ S.

Definition 2.2. For an MDP, a pure policy π is a randomized stationary policy with all probabil-

ities equal to either 0 or 1. That is, a pure policy is defined by a deterministic mapping between

states s ∈ S and actions a ∈ A. Whenever the system is in a state s ∈ S, it always chooses a
particular action as ∈ A (with probability 1).

Note that if an MDP has a finite state and action space, the set of all pure policies is also

finite. Consider the MDP associated with a particular system k ∈ {1, . . . ,K }. For any randomized

stationary policy π , it holds that
∑

a∈A (k ) π (a |s ) = 1 for all s ∈ S (k )
. Define the transition probability

matrix P(k )
π under policy π to have components as follows:

P (k )
π (s, s ′) =

∑
a∈A (k )

π (a |s )P (k )
a (s, s ′), s, s ′ ∈ S (k ) . (3)

It is easy to verify that P(k )
π is indeed a stochastic matrix, that is, it has rows with nonnegative

components that sum to 1. Let d (k )
0
∈ [0, 1]

|S (k ) |
be an (arbitrary) initial distribution for the k-th

MDP. Define the state distribution at time t under π as d (k )
π ,t . By the Markov property of the system,

we have d (k )
π ,t = d

(k )
0

(
P(k )
π

)t
. A transition probability matrix P(k )

π is ergodic if it gives rise to a Markov

chain that is irreducible and aperiodic. Since the state space is finite, an ergodic matrix P(k )
π has a

unique stationary distribution denoted d (k )
π , so that d (k )

π is the unique probability vector solving

d = dP(k )
π .

Assumption 2.1 (Unichain model). There exists a universal integer r̂ ≥ 1 such that for any
integer r ≥ r̂ and every k ∈ {1, . . . ,K }, we have the product P(k )

π1
P(k )
π2
· · · P(k )

πr is a transition matrix
with strictly positive entries for any sequence of pure policies π1,π2, · · · ,πr associated with the kth
MDP.

Remark 2.1. Assumption 2.1 implies that each MDP k ∈ {1, . . . ,K } is ergodic under any pure policy.
This follows by taking π1,π2, · · · ,πr all the same in Assumption 2.1. Since the transition matrix of
any randomized stationary policy can be formed as a convex combination of those of pure policies,
any randomized stationary policy results in an ergodic MDP for which there is a unique stationary
distribution. Assumption 2.1 is easy to check via the following simple sufficient condition.

Proposition 2.3. Assumption 2.1 holds if, for every k ∈ {1, . . . ,K }, there is a fixed ergodic matrix
P(k ) (i.e., a transition probability matrix that defines an irreducible and aperiodic Markov chain) such
that for any pure policy π on MDP k we have the decomposition

P(k )
π = δπP(k ) + (1 − δπ )Q

(k )
π ,

where δπ ∈ (0, 1] depends on the pure policy π and Q(k )
π is a stochastic matrix depending on π .

Proof. Fix k ∈ {1, . . . ,K } and assume every pure policy on MDP k has the above decomposition.

Since there are only finitely many pure policies, there exists a lower bound δmin > 0 such that

δπ ≥ δmin for every pure policy π . Since P(k )
is an ergodic matrix, there exists an integer r (k ) > 0

large enough such that (P(k ) )r has strictly positive components for all r ≥ r (k ) . Fix r ≥ r (k ) and let

π1, . . . ,πr be any sequence of r pure policies on MDP k . Then

P(k )
π1
· · · P(k )

πr ≥ δmin

(
P(k )

)r
> 0,
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where inequality is treated entrywise. The universal integer r can be taken as the maximum integer

r (k ) over all k ∈ {1, . . . ,K }. □

Definition 2.4. A joint randomized stationary policy Π on K parallel MDPs defines an al-

gorithm which chooses a joint action a :=
(
a (1), a (2), · · · , a (K )

)
∈ A (1) × A (2) · · · × A (K )

given

the joint state s :=
(
s (1), s (2), , · · · , s (K )

)
∈ S (1) × S (2) · · · × S (K )

according to a fixed conditional

probability Π (a |s ).

The following special class of separable policies can be implemented separately over each of the

K MDPs and plays a role in both algorithm design and performance analysis.

Definition 2.5. A joint randomized stationary policy π is separable if the conditional probabilities
π :=

(
π (1), π (2), · · · , π (K )

)
decompose as a product

π (a |s ) =
K∏
k=1

π (k )
(
a (k ) |s (k )

)
for all a ∈ A (1) × · · · × A (K )

, s ∈ S (1) · · · × S (K )
.

2.2 Technical assumptions

The functions f (k )t and д(k )i,t are determined by random processes defined over t = 0, 1, 2, · · · .
Specifically, let Ω be a finite dimensional vector space. Let {ωt }

∞
t=0

and {µt }
∞
t=0

be two sequences of

random vectors in Ω. Then for all a ∈ A (k )
, s ∈ S (k )

, i ∈ {1, 2, · · · ,m} we have

д(k )i,t (a, s ) = д̂
(k )
i (a, s,ωt ) ,

f (k )t (a, s ) = ˆf (k ) (a, s, µt )

where д̂(k )i and
ˆf (k ) formally define the time-varying functions in terms of the random processes

ωt and µt . It is assumed that the processes {ωt }
∞
t=0

and {µt }
∞
t=0

are generated at the start of slot 0

(before any control actions are taken), and revealed gradually over time, so that functions д(k )i,t and

f (k )t are only revealed at the end of slot t .

Remark 2.2. The functions generated at time 0 in this way are also called oblivious functions
because they are not influenced by control actions. Such an assumption is commonly adopted in
previous unconstrained online MDP works (e.g. [12], [38] and [10]). Further, it is also shown in [38]
that without this assumption, one can choose a sequence of objective functions against the decision
maker in a specifically designed MDP scenario so that one never achieves the sublinear regret.

The functions are also assumed to be bounded by a universal constant Ψ, so that:

|д̂(k )i (a, s,ω) | ≤ Ψ, | ˆf (k ) (a, s, µ ) | ≤ Ψ ,∀k ∈ {1, . . . ,K },∀a ∈ A (k ), s ∈ S (k ), ∀ω, µ ∈ Ω. (4)

It is assumed that {ωt }
∞
t=0

is independent, identically distributed (i.i.d.) and independent of {µt }
∞
t=0

.

Hence, the constraint functions can be arbitrarily correlated on the same slot, but appear i.i.d. over

different slots. On the other hand, no specific model is imposed on {µt }
∞
t=0

. Thus, the functions

f (k )t can be arbitrarily time varying. LetHt be the system information up to time t , then, for any
t ∈ {0, 1, 2, · · · }, Ht contains state and action information up to time t , i.e. s0, · · · , st , a0, · · · , at ,
and {ωt }

∞
t=0

and {µt }
∞
t=0

. Throughout this paper, we make the following assumptions.
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Assumption 2.2 (Independent transition). For each MDP, given the state s (k )t ∈ S (k ) and action
a (k )t ∈ A

(k ) , the next state s (k )t+1
is independent of all other past information up to time t as well as the

state transition s (j )t+1
, ∀j , k , i.e., for all s ∈ S (k ) it holds that

Pr
(
s (k )t+1
= s |Ht , s

(j )
t+1
, ∀j , k

)
= Pr

(
s (k )t+1
= s |s (k )t ,a

(k )
t

)
whereHt contains all past information up to time t .

Intuitively, this assumption means that all MDPs are running independently in the joint proba-

bility space and thus the only coupling among them comes from the constraints, which reflects the

notion of weakly coupled MDPs in our title. Furthermore, by definition ofHt , given s (k )t ,a
(k )
t , the

next transition s (k )t+1
is also independent of function paths {ωt }

∞
t=0

and {µt }
∞
t=0

.

The following assumption states the constraint set is strictly feasible.

Assumption 2.3 (Slater’s condition). There exists a real value η > 0 and a fixed separable
randomized stationary policy π̃ such that

E


K∑
k=1

д(k )i,t

(
a (k )t , s

(k )
t

) ���� dπ̃ , π̃

≤ −η, ∀i ∈ {1, 2, · · · ,m},

where the initial state is dπ̃ and is the unique stationary distribution of policy π̃ , and the expectation
is taken with respect to the random initial state and the stochastic function д(k )i,t (a, s ) (i.e., ωt ).

Slater’s condition is a common assumption in convergence time analysis of constrained convex

optimization (e.g. [25], [5]). Note that this assumption readily implies the constraint set G can be

achieved by the above randomized stationary policy. Specifically, take d (k )
0
= dπ̃ (k ) and P = π̃ ,

then, we have

Gi,T (d0, π̃ ) =
T−1∑
t=0

E


K∑
k=1

д(k )i,t

(
a (k )t , s

(k )
t

) ���� dπ̃ , π̃

≤ −ηT < 0.

2.3 The state-action polyhedron
In this section, we recall the well-known linear program formulation of an MDP (see, for example,

[3] and [13]). Consider an MDP with a state space S and an action space A. Let ∆ ⊆ R |S | |A | be a
probability simplex, i.e.

∆ =


θ ∈ R |S | |A | :

∑
(s,a)∈S×A

θ (s,a) = 1, θ (s,a) ≥ 0



.

Given a randomized stationary policy π with stationary state distribution dπ , the MDP is a Markov

chain with transition matrix Pπ given by (3). Thus, it must satisfy the following balance equation:∑
s ∈S

dπ (s )Pπ (s, s
′) = dπ (s

′), ∀s ′ ∈ S.

Defining θ (a, s ) = π (a |s )dπ (s ) and substituting the definition of transition probability (3) into the

above equation gives ∑
s ∈S

∑
a∈A

θ (s,a)Pa (s, s
′) =

∑
a∈A

θ (s ′,a), ∀s ′ ∈ S.

The variable θ (a, s ) is often interpreted as a stationary probability of being at state s ∈ S and taking

action a ∈ A under some randomized stationary policy. The state action polyhedron Θ is then
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defined as

Θ :=


θ ∈ ∆ :

∑
s ∈S

∑
a∈A

θ (s,a)Pa (s, s
′) =

∑
a∈A

θ (s ′,a), ∀s ′ ∈ S


.

Given any θ ∈ Θ, one can recover a randomized stationary policy π at any state s ∈ S as

π (a |s ) =



θ (a,s )∑
a∈A θ (a,s ) , if

∑
a∈A θ (a, s ) , 0,

0, otherwise.
(5)

Given any fixed penalty function f (a, s ), the best policy minimizing the penalty (without con-

straint) is a randomized stationary policy given by the solution to the following linear program

(LP):

min ⟨f ,θ⟩, s .t . θ ∈ Θ. (6)

where f := [f (a, s )]a∈A, s ∈S . Note that for any policy π given by the state-action pair θ according

to (5),

⟨f ,θ⟩ = Es∼dπ ,a∼π ( · |s ) [f (a, s )] ,

Thus, ⟨f ,θ⟩ is often referred to as the stationary state penalty of policy π .
It can also be shown that any state-action pair in the set Θ can be achieved by a convex combi-

nation of state-action vectors of pure policies, and thus all corner points of the polyhedron Θ are

from pure policies. As a consequence, the best randomized stationary policy solving (6) is always a

pure policy.

2.4 Preliminary results on MDPs
In this section, we give preliminary results regarding the properties of our weakly coupled MDPs

under randomized stationary policies. The proofs can be found in Appendix A.1. We start with a

lemma on the uniform mixing of MDPs.

Lemma 2.6. Suppose Assumption 2.1 and 2.2 hold. There exists a positive integer r and a constant
τ ≥ 1 such that for any two state distributions d1 and d2,

sup

π (k )
1

, · · · ,π (k )
r








(
d (k )

1
− d (k )

2

)
P(k )

π (k )
1

P(k )

π (k )
2

· · · P(k )

π (k )
r






1

≤ e−1/τ 


d
(k )
1
− d (k )

2




1

, ∀k ∈ {1, 2, · · · ,K }

where the supremum is taken with respect to any sequence of r randomized stationary policies{
π (k )

1
, · · · ,π (k )

r

}
.

For the k-th MDP, letΘ(k )
be its state-action polyhedron according to the definition in Section 2.3.

For any joint randomized stationary policy, let θ (k )
be the marginal state-action probability vector

on the k-th MDP, i.e. for any joint state-action distribution Φ(a, s) where a ∈ A (1) × · · · × A (K )

and s ∈ S (1) × · · · × S (K )
, we have θ (k ) (a (k ), s (k ) ) =

∑
a (j ),s (j ), j,k Φ(a, s).

We have the following lemma:

Lemma 2.7. Suppose Assumption 2.1 and 2.2 hold. Consider the product MDP with product state
space S (1) × · · · × S (K ) and action spaceA (1) × · · · ×A (K ) . Then, for any joint randomized stationary
policy, the following hold:

(1) The product MDP is irreducible and aperiodic.
(2) The marginal stationary state-action probability vector θ (k ) ∈ Θ(k ), ∀k ∈ {1, 2, · · · ,K }.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 12. Publication date: March 2018.



12:10 X. Wei et al.

An immediate conclusion we can draw from this lemma is that given any penalty and constraint

functions f (k ) and g(k )
i , k = 1, 2, · · · ,K , the stationary penalty and constraint value of any joint

randomized stationary policy can be expressed as

K∑
k=1

〈
f (k ),θ (k )

〉
,

K∑
k=1

〈
g(k )
i ,θ

(k )
〉
, i = 1, 2, · · · ,m,

with θ (k ) ∈ Θ(k )
. This in turn implies such stationary state-action probabilities {θ (k ) }Kk=1

can also

be realized via a separable randomized stationary policy π with

π (k ) (a |s ) =
θ (k ) (a, s )∑

a∈A (k ) θ (k ) (a, s )
, a ∈ A (k ), s ∈ S (k ), (7)

and the corresponding stationary penalty and constraint value can also be achieved via this policy.

This fact implies that when considering the stationary state performance only, the class of separable

randomized stationary policies is large enough to cover all possible stationary penalty and constraint

values.

In particular, let π̃ =
(
π̃ (1), · · · , π̃ (K )

)
be the separable randomized stationary policy associated

with the Slater condition (Assumption 2.3). Using the fact that the constraint functions g(k )
i,t ,k =

1, 2, · · · ,K (i.e.wt ) are i.i.d.and Assumption 2.2 on independence of probability transitions, we have

the constraint functions д(k )i,t and the state-action pairs at any time t are mutuallly independent.

Thus,

E


K∑
k=1

д(k )i,t

(
a (k )t , s

(k )
t

) ���� dπ̃ , π̃

=

K∑
k=1

〈
E
(
g(k )
i,t

)
, ˜θ (k )

〉
,

where
˜θ (k )

corresponds to π̃ according to (7).

Then, Slater’s condition can be translated to the following: There exists a sequence of state-action

probabilities { ˜θ (k ) }Kk=1
from a separable randomized stationary policy such that

˜θ (k ) ∈ Θ(k ), ∀k ,
and

K∑
k=1

〈
E
(
g(k )
i,t

)
, ˜θ (k )

〉
≤ −η, i = 1, 2, · · · ,m, (8)

The assumption on separability does not lose generality in the sense that if there is no separable

randomized stationary policy that satisfies (8), then, there is no joint randomized stationary policy

that satisfies (8) either.

2.5 The blessing of slow-update property in online MDPs
The current state of an MDP depends on previous states and actions. As a consequence, the slot

t penalty not only depends on the current penalty function and current action, but also on the

system history. This complication does not arise in classical online convex optimization ([18],[39])

as there is no notion of “state” and the slot t penalty depends only on the slot t penalty function

and action.

Now imagine a virtual system where, on each slot t , a policy πt is chosen (rather than an action).

Further imagine the MDP immediately reaching its corresponding stationary distribution dπt . Then
the states and actions on previous slots do not matter and the slot t performance depends only on

the chosen policy πt and on the current penalty and constraint functions. This imaginary system

now has a structure similar to classical online convex optimization as in the Zinkevich scenario

[39].
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A key feature of online convex optimization algorithms as in [39] is that they update their

decision variables slowly. For a fixed time scale T over which O (
√
T ) regret is desired, the decision

variables are typically changed no more than a distance O (1/
√
T ) from one slot to the next. An

important insight in prior (unconstrained) MDP works(e.g. [10], [12], and [38]) is that such slow

updates also guarantee the “approximate” convergence of an MDP to its stationary distribution.

As a consequence, one can design the decision policies under the imaginary assumption that the

system instantly reaches its stationary distribution, and later bound the error between the true

system and the imaginary system. If the error is on the same order as the desired O (
√
T ) regret,

then this approach works. This idea serves as a cornerstone of our algorithm design of the next

section, which treats the case of multiple weakly coupled systems with both objective functions

and constraint functions.

3 OCMDP ALGORITHM
Our proposed algorithm is distributed in the sense that each time slot, each MDP solves its own

subproblem and the constraint violations are controlled by a simple update of global multipliers

called “virtual queues” at the end of each slot. LetΘ(1), Θ(2), · · · , Θ(K )
be the state-action polyhedra

of K MDPs, respectively. Let θ (k )
t ∈ Θ(k )

be a state-action vector at time slot t . At t = 0, each MDP

chooses its initial state-action vector θ (k )
0

resulting from any separable randomized stationary policy

π (k )
0

. For example, one could choose a uniform policy π (k ) (a |s ) = 1/
���A

(k ) ��� , ∀s ∈ S
(k )
, solve the

equation dπ (k )
0

= dπ (k )
0

P(k )

π (k )
0

to get a probability vector dπ (k )
0

, and obtain θ (k )
0

(a, s ) = dπ (k )
0

(s )/ ���A
(k ) ���.

For each constraint i ∈ {1, 2, · · · ,m}, let Qi (t ) be a virtual queue defined over slots t = 0, 1, 2, · · ·
with the initial condition Qi (0) = Qi (1) = 0, and update equation:

Qi (t + 1) = max



Qi (t ) +

K∑
k=1

〈
g(k )
i,t−1
,θt

〉
, 0



, ∀t ∈ {1, 2, 3, · · · }. (9)

Our algorithm uses two parameters V > 0 and α > 0 and makes decisions as follows: At the start

of each slot t ∈ {1, 2, 3, · · · },

• The k-th MDP observes Qi (t ), i = 1, 2, · · · ,m and chooses θ (k )
t to solve the following

subproblem:

θ (k )
t = argminθ ∈Θ(k )

〈
V f (k )t−1

+

m∑
i=1

Qi (t )g
(k )
i,t−1
,θ

〉
+ α 


θ − θ

(k )
t−1





2

2

. (10)

• Construct the randomized stationary policy π (k )
t according to (5) with θ = θ (k )

t , and choose

the action a (k )t at k-th MDP according to the conditional distribution π (k )
t

(
·|s (k )t

)
.

• Update the virtual queue Qi (t ) according to (9) for all i = 1, 2, · · · ,m.

Remark 3.1. Note that for any slot t ≥ 1, this algorithm gives a separable randomized stationary
policy, so that each MDP chooses its own policy based on its own function f (k )t−1

, g(k )
i,t−1
, i ∈ {1, 2, · · · ,m},

and a commonmultiplierQ(t ) := (Q1 (t ), · · · ,Qm (t )). Furthermore, note that (10) is a convex quadratic
program (QP). Standard theory of QP (e.g. [34]) shows that the computation complexity solving (10)

is poly
(���S

(k ) ���
���A

(k ) ���
)
for each k . Thus, the total computation complexity over all MDPs during each

round is poly
(
K ���S

(k ) ���
���A

(k ) ���
)
.
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Remark 3.2. The quadratic term α 


θ − θ
(k )
t−1





2

2

in (10) penalizes the deviation of θ from the previous

decision variable θ (k )
t−1

. Thus, under proper choice of α , the distance between θ (k )
t and θ (k )

t−1
would be

very small, which is the slow update condition we need according to Section 2.5.

The next lemma shows that solving (10) is in fact a projection onto the state-action polyhedron.

For any set X ∈ Rn and a vector y ∈ Rn , define the projection operator PX (y) as

PX (y) = arginfx∈X ∥x − y∥2.

Lemma 3.1. Fix an α > 0 and t ∈ {1, 2, 3, · · · }. The θt that solves (10) is

θ (k )
t = PΘ(k ) *

,
θ (k )
t−1
−

w(k )
t

2α
+
-
,

where w(k )
t = V f (k )t−1

+
∑m

i=1
Qi (t )g

(k )
i,t−1

∈ R |A
(k ) | |S (k ) | .

Proof. By definition, we have

θ (k )
t =argminθ ∈Θ(k )

〈
w(k )
t ,θ

〉
+ α 


θ − θ

(k )
t−1





2

2

=argminθ ∈Θ(k )

〈
w(k )
t ,θ − θ

(k )
t−1

〉
+ α 


θ − θ

(k )
t−1





2

2

+
〈
w(k )
t ,θ

(k )
t−1

〉
=argminθ ∈Θ(k ) α ·

(〈
w(k )
t

/
α ,θ − θ (k )

t−1

〉
+




θ − θ
(k )
t−1





2

2

)
+

〈
w(k )
t ,θ

(k )
t−1

〉
=argminθ ∈Θ(k ) α ·




θ − θ
(k )
t−1
+ w(k )

t

/
2α




2

2

=PΘ(k )

(
θ (k )
t−1
− w(k )

t

/
2α

)
,

finishing the proof. □

3.1 Intuition of the algorithm and roadmap of analysis
The intuition of this algorithm follows from the discussion in Section 2.5. Instead of the Markovian

regret (1) and constraint set (2), we work on the imaginary system that after the decision maker

chooses any joint policy Πt and the penalty/constraint functions are revealed, theK parallel Markov

chains reach stationary state distribution right away, with state-action probability vectors

{
θ (k )
t

}K
k=1

forK parallel MDPs. Thus there is no Markov state in such a system anymore and the corresponding

stationary penalty and constraint function value at time t can be expressed as

∑K
k=1

〈
f (k )t ,θ

(k )
t

〉
and∑K

k=1

〈
g(k )
i,t ,θ

(k )
t

〉
, i = 1, 2, · · · ,m, respectively. As a consequence, we are now facing a relatively

easier task of minimizing the following regret:

T−1∑
t=0

K∑
k=1

E
(〈

f (k )t ,θ
(k )
t

〉)
−

T−1∑
t=0

K∑
k=1

E
(〈

f (k )t ,θ
(k )
∗

〉)
, (11)

where

{
θ (k )
∗

}K
k=1

are the state-action probabilities corresponding to the best fixed joint randomized

stationary policy within the following stationary constraint set

G :=
{
θ (k ) ∈ Θ(k ), k ∈ {1, 2, · · · ,K } :

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )

〉
≤ 0, i = 1, 2, · · · ,m



, (12)
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with the assumption that Slater’s condition (8) holds.

To analyze the proposed algorithm, we need to tackle the following two major challenges:

• Whether or not the policy decision of the proposed algorithm would yield O (
√
T ) regret and

constraint violation on the imaginary system that reaches steady state instantaneously on

each slot.

• Whether the error between the imaginary and true systems can be bounded by O (
√
T ).

In the next section, we answer these questions via a multi-stage analysis piecing together the

results of MDPs from Section 2.4 with multiple ingredients from convex analysis and stochastic

queue analysis. We first show the O (
√
T ) regret and constraint violation in the imaginary online

linear program incorporating a new regret analysis procedure with a stochastic drift analysis

for queue processes. Then, we show if the benchmark randomized stationary algorithm always

starts from its stationary state, then, the discrepancy of regrets between the imaginary and true

systems can be controlled via the slow-update property of the proposed algorithm together with the

properties of MDPs developed in Section 2.4. Finally, for the problem with arbitrary non-stationary

starting state, we reformulate it as a perturbation on the aforementioned stationary state problem

and analyze the perturbation via Farkas’ Lemma.

4 CONVERGENCE TIME ANALYSIS
4.1 Stationary state performance: An online linear program
Let Q(t ) := [Q1 (t ), Q2 (t ), · · · , Qm (t )] be the virtual queue vector and L(t ) = 1

2
∥Q(t )∥2

2
. Define

the drift ∆(t ) := L(t + 1) − L(t ).

4.1.1 Sample-path analysis. This section develops a couple of bounds given a sequence of penalty
functions f (k )

0
, f (k )

1
, · · · , f (k )T−1

and constraint functions д(k )i,0 ,д
(k )
i,1 , · · · ,д

(k )
i,T−1

. The following lemma

provides bounds for virtual queue processes:

Lemma 4.1. For any i ∈ {1, 2, · · · ,m} atT ∈ {1, 2, · · · }, the following holds under the virtual queue
update (9),

T∑
t=1

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t−1

〉
≤ Qi (T + 1) −Qi (1) + Ψ

T∑
t=1

K∑
k=1

√���A
(k ) ���

���S
(k ) ���




θ
(k )
t − θ

(k )
t−1




2

,

where Ψ > 0 is the constant defined in (4).

Proof. By the queue updating rule (9), for any t ∈ N,

Qi (t + 1)

=max



Qi (t ) +

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉
, 0




≥Qi (t ) +
K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉
=Qi (t ) +

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t−1

〉
+

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t − θ
(k )
t−1

〉
≥Qi (t ) +

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t−1

〉
−

K∑
k=1




д
(k )
i,t−1




2




θ
(k )
t − θ

(k )
t−1




2

,
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Note that the constraint functions are deterministically bounded,




д
(k )
i,t−1





2

2

≤
���A

(k ) ���
���S

(k ) ��� Ψ
2.

Substituting this bound into the above queue bound and rearranging the terms finish the proof. □

The next lemma provides a bound for the drift ∆(t ).

Lemma 4.2. For any slot t ≥ 1, we have

∆(t ) ≤
1

2

mK2Ψ2 +

m∑
i=1

Qi (t )
K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉
.

Proof. By definition, we have

∆(t ) =
1

2

∥Q(t + 1)∥2
2
−

1

2

∥Q(t )∥2
2

≤
1

2

m∑
i=1

*.
,

*
,
Qi (t ) +

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉+
-

2

−Qi (t )
2+/
-

=

m∑
i=1

Qi (t )
K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉
+

1

2

m∑
i=1

*
,

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉+
-

2

.

Note that by the queue update (9), we have

������

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉������
≤ K 


g(k )

i,t−1




∞



θ

(k )
t




1

≤ KΨ.

Substituting this bound into the drift bound finishes the proof. □

Consider a convex set X ⊆ Rn . Recall that for a fixed real number c > 0, a function h : X → R is

said to be c-strongly convex, if h(x ) − c
2
∥x ∥2

2
is convex over x ∈ X. It is easy to see that if q : X → R

is convex, c > 0 and b ∈ Rn , the function q(x ) + c
2
∥x − b∥2

2
is c-strongly convex. Furthermore, if

the function h is c-strongly convex that is minimized at a point xmin ∈ X, then (see, e.g., Corollary

1 in [37]):

h(xmin) ≤ h(y) −
c

2

∥y − xmin∥
2

2
, ∀y ∈ X. (13)

The following lemma is a direct consequence of the above strongly convex result. It also demon-

strates the key property of our minimization subproblem (10).

Lemma 4.3. The following bound holds for any k ∈ {1, 2, · · · ,K } and any fixed θ (k )
∗ ∈ Θ

(k ) :

V
〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉
+

m∑
i=1

Qi (t )
〈
g(k )
i,t−1
,θ (k )

t

〉
+ α ∥θ (k )

t − θ
(k )
t−1
∥2

2

≤ V
〈
f (k )t−1
,θ (k )
∗ − θ

(k )
t−1

〉
+

m∑
i=1

Qi (t )
〈
g(k )
i,t−1
,θ (k )
∗

〉
+ α ∥θ (k )

∗ − θ
(k )
t−1
∥2

2
− α ∥θ (k )

∗ − θ
(k )
t ∥

2

2
. (14)

This lemma follows easily from the fact that the proposed algorithm (10) gives θ (k )
t ∈ Θ(k )

minimizing the left hand side, which is a strongly convex function, and then, applying (13), with

h
(
θ (k )
∗

)
= V

〈
f (k )t−1
,θ (k )
∗ − θ

(k )
t−1

〉
+

m∑
i=1

Qi (t )
〈
g(k )
i,t−1
,θ (k )
∗

〉
+ α 


θ

(k )
∗ − θ

(k )
t−1





2

2

Combining the previous two lemmas gives the following “drift-plus-penalty” bound.
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Lemma 4.4. For any fixed {θ (k )
∗ }

K
k=1

such that θ (k )
∗ ∈ Θ

(k ) and t ∈ N, we have the following bound,

∆(t ) +V
K∑
k=1

〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉
+ α

K∑
k=1

∥θ (k )
t − θ

(k )
t−1
∥2

2

≤
3

2

mK2Ψ2 +V
K∑
k=1

〈
f (k )t−1
,θ (k )
∗ − θ

(k )
t−1

〉
+

m∑
i=1

Qi (t − 1)

·

K∑
k=1

〈
g(k )
i,t−1
,θ (k )
∗

〉
+ α

K∑
k=1

∥θ (k )
∗ − θ

(k )
t−1
∥2

2
− α

K∑
k=1

∥θ (k )
∗ − θ

(k )
t ∥

2

2
(15)

Proof. Using Lemma 4.2 and then Lemma 4.3, we obtain

∆(t ) +V
K∑
k=1

〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉
+ α

K∑
k=1

∥θ (k )
t − θ

(k )
t−1
∥2

2

≤
1

2

mK2Ψ2 +

m∑
i=1

Qi (t )
K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉
+V

K∑
k=1

〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉
+ α

K∑
k=1

∥θ (k )
t − θ

(k )
t−1
∥2

2

≤
1

2

mK2Ψ2 +

K∑
k=1

〈
f (k )t−1
,θ (k )
∗ − θ

(k )
t−1

〉
+

m∑
i=1

Qi (t )
K∑
k=1

〈
g(k )
i,t−1
,θ (k )
∗

〉
+ α

K∑
k=1

∥θ (k )
∗ − θ

(k )
t−1
∥2

2

− α
K∑
k=1

∥θ (k )
∗ − θ

(k )
t ∥

2

2
. (16)

Note that by the queue updating rule (9), we have for any t ≥ 2,

|Qi (t ) −Qi (t − 1) | ≤
������

K∑
k=1

〈
g(k )
i,t−2
,θ (k )

t−1

〉������
≤ K 


g(k )

i,t−2




∞



θ

(k )
t−1




1

≤ KΨ,

and for t = 1, Qi (t ) −Qi (t − 1) = 0 by the initial condition of the algorithm. Also, we have for any

θ (k )
∗ ∈ Θ

(k )
,

������

K∑
k=1

〈
g(k )
i,t−1
,θ (k )
∗

〉������
≤ K 


g(k )

i,t−2




∞



θ

(k )
∗




1

≤ KΨ.

Thus, we have

m∑
i=1

Qi (t )
K∑
k=1

〈
g(k )
i,t−1
,θ (k )
∗

〉
≤

m∑
i=1

Qi (t − 1)
K∑
k=1

〈
g(k )
i,t−1
,θ (k )
∗

〉
+mK2Ψ2.

Substituting this bound into (16) finishes the proof. □

4.1.2 Objective bound.

Theorem 4.5. For any {θ (k )
∗ }

K
k=1

in the constraint set (12) and any T ∈ {1, 2, 3, · · · }, the proposed
algorithm has the following stationary state performance bound:

1

T

T−1∑
t=0

E*
,

K∑
k=1

〈
f (k )t ,θ

(k )
t

〉+
-
≤

1

T

T−1∑
t=0

E*
,

K∑
k=1

〈
f (k )t ,θ

(k )
∗

〉+
-

+
2αK

TV
+
mK2Ψ2

T
+
VΨ2

2α

K∑
k=1

���S
(k ) ���

���A
(k ) ��� +

3

2

mK2Ψ2

V
,
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In particular, choosing α = T and V =
√
T gives the O (

√
T ) regret

1

T

T−1∑
t=0

E*
,

K∑
k=1

〈
f (k )t ,θ

(k )
t

〉+
-
≤

1

T

T−1∑
t=0

E*
,

K∑
k=1

〈
f (k )t ,θ

(k )
∗

〉+
-

+ *
,
2K +

Ψ2

2

K∑
k=1

���S
(k ) ���

���A
(k ) ��� +

5

2

mK2Ψ2+
-

1

√
T
.

Proof. First of all, note that {g(k )
i,t−1
}Kk=1

is i.i.d. and independent of all system history up to t − 1,

and thus independent of Qi (t − 1), i = 1, 2, · · · ,m. We have

E
(
Qi (t − 1)

〈
g(k )
i,t−1
,θ (k )
∗

〉)
= E(Qi (t − 1))E*

,

K∑
k=1

〈
g(k )
i,t−1
,θ (k )
∗

〉+
-
≤ 0 (17)

where the last inequality follows from the assumption that {θ (k )
∗ }

K
k=1

is in the constraint set (12).

Substituting θ (k )
∗ into (15), taking expectation with respect to both sides and using (17) give

E(∆(t )) +VE*
,

K∑
k=1

〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉+
-
+ αE*

,

K∑
k=1

∥θ (k )
t − θ

(k )
t−1
∥2

2

+
-

≤
3

2

mK2Ψ2 +VE*
,

K∑
k=1

〈
f (k )t−1
,θ (k )
∗ − θ

(k )
t−1

〉+
-
+ αE*

,

K∑
k=1

∥θ (k )
∗ − θ

(k )
t−1
∥2

2

+
-
− αE*

,

K∑
k=1

∥θ (k )
∗ − θ

(k )
t ∥

2

2

+
-
,

where the second inequality follows from (17). Note that for any k , completing the squares gives

V
〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉
+ α ∥θ (k )

t − θ
(k )
t−1
∥2

2

≥







√
α

2

(
θ (k )
t − θ

(k )
t−1

)
+

V

2

√
α/2

f (k )t−1








2

2

−
V 2Ψ2 ���S

(k ) ���
���A

(k ) ���
2α

.

Substituting this inequality into the previous bound and rearranging the terms give

VE*
,

K∑
k=1

〈
f (k )t−1
,θ (k )

t−1

〉+
-
≤ VE*

,

K∑
k=1

〈
f (k )t−1
,θ (k )
∗

〉+
-
− E(∆(t )) +

V 2
∑K

k=1
Ψ2 ���S

(k ) ���
���A

(k ) ���
2α

+
3

2

mK2Ψ2

+ αE*
,

K∑
k=1

∥θ (k )
∗ − θ

(k )
t−1
∥2

2

+
-
− αE*

,

K∑
k=1

∥θ (k )
∗ − θ

(k )
t ∥

2

2

+
-
.

Taking telescoping sums from 1 to T and dividing both sides by TV gives,

1

T

T∑
t=1

E*
,

K∑
k=1

〈
f (k )t−1
,θ (k )

t−1

〉+
-
≤E*

,

K∑
k=1

〈
f (k )t−1
,θ (k )
∗

〉+
-
+
L(0) − L(T + 1)

VT
+
V

∑K
k=1

Ψ2 ���S
(k ) ���

���A
(k ) ���

2α

+
3

2

mK2Ψ2

V
+
αE

(∑K
k=1
∥θ (k )
∗ − θ

(k )
T−1
∥2

2

)
− αE

(∑K
k=1
∥θ (k )
∗ − θ

(k )
T ∥

2

2

)
VT

≤E*
,

K∑
k=1

〈
f (k )t−1
,θ (k )
∗

〉+
-
+
V

∑K
k=1

Ψ2 ���S
(k ) ���

���A
(k ) ���

2α
+

3

2

mK2Ψ2

V
+

2αK

VT
,

where we use the fact that L(0) = 0 and ∥θ (k )
∗ − θ

(k )
T−1
∥2

2
≤ ∥θ (k )

∗ − θ
(k )
T−1
∥1 ≤ 2. □
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4.1.3 A drift lemma and its implications. From Lemma 4.1, we know that in order to get the

constraint violation bound, we need to look at the size of the virtual queueQi (T +1), i = 1, 2, · · · ,m.

The following drift lemma serves as a cornerstone for our goal.

Lemma 4.6 (Lemma 5 of [35]). Let {Ω,F , P } be a probability space. Let {Z (t ), t ≥ 1} be a discrete
time stochastic process adapted to a filtration {Ft−1, t ≥ 1} with Z (1) = 0 and F0 = {∅,Ω}. Suppose
there exist integer t0 > 0, real constants λ ∈ R, δmax > 0 and 0 < ζ ≤ δmax such that

|Z (t + 1) − Z (t ) | ≤δmax, (18)

E[Z (t + t0) − Z (t ) |Ft−1] ≤

{
t0δmax, if Z (t ) < λ
−t0ζ , if Z (t ) ≥ λ

. (19)

hold for all t ∈ {1, 2, . . .}. Then, the following holds:

E[Z (t )] ≤ λ + t0δmax + t0
4δ 2

max

ζ
log

[ 8δ 2

max

ζ 2

]
,∀t ∈ {1, 2, . . .}.

Note that a special case of above drift lemma for t0 = 1 dates back to the seminal paper of Hajek

([17]) bounding the size of a random process with strongly negative drift. Since then, its power has

been demonstrated in various scenarios ranging from steady state queue bound ([11]) to feasibility

analysis of stochastic optimization ([33]). The current generalization to a multi-step drift is first

considered in [35].

This lemma is useful in the current context due to the following lemma, whose proof can be

found in Appendix A.2.

Lemma 4.7. Let Ft , t ≥ 1 be the system history functions up to time t , including f (k )
0
, · · · , f (k )t−1

,
д(k )

0,i , · · · ,д
(k )
t−1,i , i = 1, 2, · · · ,m, k = 1, 2, · · · ,K , and F0 is a null set. Let t0 be an arbitrary positive

integer, then, we have

���∥Q(t + 1)∥2 − ∥Q(t )∥2
��� ≤
√
mKΨ,

E[∥Q(t + t0)∥2 − ∥Q(t )∥2
���F (t − 1)] ≤

{
t0
√
mKΨ, if ∥Q(t )∥ < λ
−t0

η
2
, if ∥Q(t )∥ ≥ λ

where λ = 8VKΨ+3mK 2Ψ2+4Kα+t0 (t0−1)mΨ+2mKΨηt0+η2t 2

0

ηt0

.

Combining the previous two lemmas gives the virtual queue bound as

E(∥Q(t )∥2) ≤
8VKΨ + 3mK2Ψ2 + 4Kα + t0 (t0 − 1)mΨ + 2mKΨηt0 + η

2t2

0

ηt0
+ t0
√
mKΨ

+
4t0mK2Ψ2

η
log

[
8mK2Ψ2

η2

]
.

We then choose t0 =
√
T , V =

√
T and α = T , which implies that

E(∥Q(t )∥2) ≤ C (m,K ,Ψ,η)
√
T , (20)

where C (m,K ,Ψ,η) = 8KΨ
η +

3mK 2Ψ2

η2
+ 4K+mΨ

η + 2mKΨ + η +
√
mKΨ + 4mK 2Ψ2

η log

[
8mK 2Ψ2

η2

]
.
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4.1.4 The slow-update condition and constraint violation. In this section, we prove the slow-

update property of the proposed algorithm, which not only implies the the O (
√
T ) constraint

violation bound, but also plays a key role in Markov analysis.

Lemma 4.8. The sequence of state-action vectors θ (k )
t , t ∈ {1, 2, · · · ,T } satisfies

E
(
∥θ (k )

t − θ
(k )
t−1
∥2

)
≤

√
m |A (k ) | |S (k ) |ΨE(∥Q(t )∥2)

2α
+

√
|A (k ) | |S (k ) |ΨV

2α
.

In particular,choosing V =
√
T and α = T gives a slow-update condition

E
(
∥θ (k )

t − θ
(k )
t−1
∥2

)
≤

√
|A (k ) | |S (k ) |Ψ +C

√
m |A (k ) | |S (k ) |Ψ

2

√
T

, (21)

where C = C (m,K ,Ψ,η) is defined in (20).

Proof of Lemma 4.8. First, choosing θ = θt−1 in (14) gives

V
〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉
+

m∑
i=1

Qi (t )
〈
g(k )
i,t−1
,θ (k )

t

〉
+ α ∥θ (k )

t − θ
(k )
t−1
∥2

2

≤

m∑
i=1

Qi (t )⟨g
(k )
i,t−1
,θ (k )

t−1
⟩ − α ∥θ (k )

t−1
− θ (k )

t ∥
2

2
.

Rearranging the terms gives

2α ∥θ (k )
t − θ

(k )
t−1
∥2

2
≤ −V ⟨f (k )t−1

,θ (k )
t − θ

(k )
t−1
⟩ −

m∑
i=1

Qi (t )⟨g
(k )
i,t−1
,θ (k )

t − θ
(k )
t−1
⟩

≤V ∥f (k )t−1
∥2 · ∥θ

(k )
t − θ

(k )
t−1
∥2 +

m∑
i=1

Qi (t )∥g
(k )
i,t−1
∥2 · ∥θ

(k )
t − θ

(k )
t−1
∥2

≤V ∥ft−1∥2 · ∥θ
(k )
t − θ

(k )
t−1
∥2 + ∥Q(t )∥2

√√ m∑
i=1

∥g(k )
i,t−1
∥2

2
∥θ (k )

t − θ
(k )
t−1
∥2,

where the second and third inequality follow from Cauchy-Schwarz inequality. Thus, it follows




θ
(k )
t − θ

(k )
t−1




2

≤
V ∥f (k )t−1

∥2 + ∥Q(t )∥2 ·
√∑m

i=1
∥g(k )

i,t−1
∥2

2

2α
.

Applying the fact that ∥f (k )t−1
∥2 ≤

√
|A (k ) | |S (k ) |Ψ, ∥g(k )

i,t−1
∥2 ≤

√
|A (k ) | |S (k ) |Ψ and taking expecta-

tion from both sides give the first bound in the lemma. The second bound follows directly from the

first bound by further substituting (20). □

Theorem 4.9. The proposed algorithm has the following stationary state constraint violation bound:

1

T

T−1∑
t=0

E*
,

K∑
k=1

〈
g(k )
i,t ,θ

(k )
t

〉+
-
≤

1

√
T

*
,
C +

K∑
k=1

√
m |A (k ) | |S (k ) |ΨC +

K∑
k=1

|A (k ) | |S (k ) |Ψ2+
-
,

where C = C (m,K ,Ψ,η) is defined in (20).

Proof. Taking expectation from both sides of Lemma 4.1 gives

T∑
t=1

E*
,

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t−1

〉+
-
≤ E(Qi (T + 1)) + Ψ

T∑
t=1

K∑
k=1

√���A
(k ) ���

���S
(k ) ���E

(


θ
(k )
t − θ

(k )
t−1




2

)
.
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Substituting the bounds (20) and (21) in to the above inequality gives the desired result. □

4.2 Markov analysis
So far, we have shown that our algorithm achieves an O (

√
T ) regret and constraint violation

simultaneously regarding the stationary online linear program (11) with constraint set given by

(12) in the imaginary system. In this section, we show how these stationary state results lead to a

tight performance bound on the original true online MDP problem (1) and (2) comparing to any

joint randomized stationary algorithm starting from its stationary state.

4.2.1 Approximate mixing of MDPs. Let Ft , t ≥ 1 be the set of system history functions up to

time t , including f (k )
0
, · · · , f (k )t−1

, д(k )
0,i , · · · ,д

(k )
t−1,i , i = 1, 2, · · · ,m, k = 1, 2, · · · ,K , and F0 is a null

set. Let dπ (k )
t

be the stationary state distribution at k-th MDP under the randomized stationary

policy π (k )
t in the proposed algorithm. Let v (k )

t be the true state distribution at time slot t under

the proposed algorithm given the function path FT and starting state d (k )
0

, i.e. for any s ∈ S (k )
,

v (k )
t (s ) := Pr

(
s (k )t = s |FT

)
and v (k )

0
= d (k )

0
.

The following lemma provides a key estimate on the distance between stationary distribution

and true distribution at each time slot t . It builds upon the slow-update condition (Lemma 4.8) of

the proposed algorithm and uniform mixing bound of general MDPs (Lemma 2.6).

Lemma 4.10. Consider the proposed algorithm with V =
√
T and α = T . For any initial state

distribution {d (k )
0
}Kk=1

and any t ∈ {0, 1, 2, · · · ,T − 1}, we have

E
(



dπ (k )

t
−v (k )

t




1

)
≤ τr

(���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
) /

2

√
T + 2e−

t
τ r +1,

where τ and r are mixing parameters defined in Lemma 2.6 andC is an absolute constant defined in
(20).

Proof of Lemma 4.10. By Lemma 4.8 we know that for any t ∈ {1, 2, · · · ,T },

E
(


θ

(k )
t − θ

(k )
t−1




2

)
≤

√���A
(k ) ���

���S
(k ) ���Ψ +C

√
m ���A

(k ) ���
���S

(k ) ���Ψ

2

√
T

,

Thus,

E
(


θ

(k )
t − θ

(k )
t−1




1

)
≤

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

,

Since for any s ∈ S (k )
,

���dπ (k )
t

(s ) −dπ (k )
t−1

(s )��� =
����
∑

a∈A (k ) θ
(k )
t (a, s ) − θ (k )

t−1
(a, s )

���� ≤
∑

a∈A (k )
����θ

(k )
t (a, s ) −

θ (k )
t−1

(a, s )
����, it then follows

E
(



dπ (k )

t
− dπ (k )

t−1





1

)
≤ E

(


θ
(k )
t − θ

(k )
t−1




1

)
≤

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

. (22)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 12. Publication date: March 2018.



12:20 X. Wei et al.

Now, we use the above relation to bound E
(



dπ (k )

t
−v (k )

t




1

)
for any t ≥ r .

E
(



dπ (k )

t
−v (k )

t




1

)
≤E

(



dπ (k )
t
− dπ (k )

t−1





1

)
+ E

(



dπ (k )
t−1

−v (k )
t





1

)
≤

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ E
(



dπ (k )

t−1

−v (k )
t





1

)
=

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ E

(






(
dπ (k )

t−1

−v (k )
t−1

)
P(k )

π (k )
t−1






1

)
, (23)

where the second inequality follows from the slow-update condition (22) and the final equality

follows from the fact that given the function path FT , the following holds

dπ (k )
t−1

−v (k )
t =

(
dπ (k )

t−1

−v (k )
t−1

)
P(k )

π (k )
t−1

. (24)

To see this, note that from the proposed algorithm, the policy π (k )
t is determined by FT . Thus, by

definition of stationary distribution, given FT , we know that dπ (k )
t−1

= dπ (k )
t−1

P(k )

π (k )
t−1

, and it is enough to

show that given FT ,

v (k )
t = v (k )

t−1
P(k )

π (k )
t−1

.

First of all, the state distribution v (k )
t is determined by v (k )

t−1
, π (k )

t−1
and probability transition from

st−1 to st , which are in turn determined by FT . Thus, given FT , for any s ∈ S
(k )
,

v (k )
t (s ) =

∑
s ′∈S (k )

Pr (st = s |st−1 = s
′,FT )v

(k )
t−1

(s ′),

and

Pr (st = s |st−1 = s
′,FT ) =

∑
a∈A (k )

Pr (st = s |at = a, st−1 = s
′,FT )Pr (at = a |st−1 = s

′,FT )

=
∑

a∈A (k )

Pa (s
′, s )Pr (at = a |st−1 = s

′,FT )

=
∑

a∈A (k )

Pa (s
′, s )π (k )

t−1
(a |s ′) = Pπ (k )

t−1

(s ′, s ),

where the second inequality follows from the Assumption 2.2, the third equality follows from the

fact that π (k )
t−1

is determined by FT , thus, for any t ,

π (k )
t (a���s

′) = Pr (at = a |st−1 = s
′,FT ), ∀a ∈ A

(k ), s ′ ∈ S (k ),

and the last equality follows from the definition of transition probability (3). This gives

v (k )
t (s ) =

∑
s ′∈S (k )

Pπ (k )
t−1

(s ′, s )v (k )
t−1

(s ′),

and thus (24) holds.
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We can iteratively apply the procedure (23) r times as follows

E
(



dπ (k )

t
−v (k )

t




1

)
≤

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ E

(






(
dπ (k )

t−1

− dπ (k )
t−2

)
P(k )

π (k )
t−1






1

)
+ E

(






(
dπ (k )

t−2

−v (k )
t−1

)
P(k )

π (k )
t−1






1

)

≤2 ·

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ E

(






(
dπ (k )

t−2

−v (k )
t−1

)
P(k )

π (k )
t−1






1

)

=2 ·

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ E

(






(
dπ (k )

t−2

−v (k )
t−2

)
P(k )

π (k )
t−2

P(k )

π (k )
t−1






1

)

≤ · · · ≤ r ·

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ E

(






(
dπ (k )

t−r
−v (k )

t−r

)
P(k )

π (k )
t−r

· · · P(k )

π (k )
t−1






1

)
,

where the second inequality follows from the nonexpansive property in ℓ1 norm of the stochastic

matrix P(k )

π (k )
t−1

that








(
dπ (k )

t−1

− dπ (k )
t−2

)
P(k )

π (k )
t−1






1

≤




dπ (k )

t−1

− dπ (k )
t−2





1

,

and then using the slow-update condition (22) again. By Lemma 2.6, we have

E
(



dπ (k )

t
−v (k )

t




1

)
≤ r ·

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ e−1/τE
(



dπ (k )

t−r
−v (k )

t−r




1

)
.

Iterating this inequality down to t = 0 gives

E
(



dπ (k )

t
−v (k )

t




1

)
≤

⌊t/τ ⌋∑
j=0

e−j/τ · r ·

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ E
(



dπ (k )

0

−v (k )
0





1

)
e−⌊t/r ⌋/τ

≤

⌊t/τ ⌋∑
j=0

e−j/τ · r ·

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ 2e−⌊t/r ⌋/τ

≤

∫ ∞

x=0

e−x/τdx · r ·

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ 2e−
t
rτ +1

≤τr ·

���A
(k ) ���

���S
(k ) ��� Ψ +C

√
m ���A

(k ) ���
���S

(k ) ��� Ψ
2

√
T

+ 2e−
t
rτ +1

finishing the proof. □

4.2.2 Benchmarking against policies starting from stationary state. Combining the results derived

so far, we have the following regret bound regarding any randomized stationary policy Π starting

from its stationary state distribution dΠ such that (dΠ,Π) in the constraint set G defined in (2).

Theorem 4.11. LetP be the sequence of randomized stationary policies resulting from the proposed
algorithm with V =

√
T and α = T . Let d0 be the starting state of the proposed algorithm. For any
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randomized stationary policy Π starting from its stationary state distribution dΠ such that (dΠ,Π) ∈ G,
we have

FT (d0,P ) − FT (dΠ,Π) ≤ O *
,
m3/2K2

K∑
k=1

���A
(k ) ���

���S
(k ) ��� ·
√
T +

-
,

Gi,T (d0,P ) ≤ O *
,
m3/2K2

K∑
k=1

���A
(k ) ���

���S
(k ) ��� ·
√
T +

-
, i = 1, 2, · · · ,m.

Proof of Theorem 4.11. First of all, by Lemma 2.7, for any randomized stationary policy Π,

there exists some stationary state-action probability vectors {θ (k )
∗ }

K
k=1

such that θ (k )
∗ ∈ Θ

(k )
,

FT (dΠ,Π) =
T−1∑
t=0

K∑
k=1

〈
E(ft ),θ

(k )
∗

〉
,

and Gi,T (dΠ,Π) =
∑T−1

t=0

∑K
k=1

〈
E
(
gi,t

)
,θ (k )
∗

〉
. As a consequence, (dΠ,Π) ∈ G implies Gi,T (dΠ,Π) =∑T−1

t=0

∑K
k=1

〈
E
(
gi,t

)
,θ (k )
∗

〉
≤ 0, ∀i ∈ {1, 2, · · · ,m} and it follows {θ (k )

∗ }
K
k=1

is in the imaginary

constraint set G defined in (12). Thus, we are in a good shape applying Theorem 4.5 from imaginary

systems.

We then split FT (d0,P ) − FT (dΠ,Π) into two terms:

FT (d0,P ) − FT (d0,Π) ≤
������
E*

,

T−1∑
t=0

K∑
k=1

f (k )t (a (k )t , s
(k )
t )

������
d0,P+

-
−

T−1∑
t=0

K∑
k=1

E
(〈

f (k )t ,θ
(k )
t

〉) ������︸                                                                         ︷︷                                                                         ︸
(I)

+

T−1∑
t=0

K∑
k=1

(
E
(〈

f (k )t ,θ
(k )
t

〉)
−

〈
E(ft ),θ

(k )
∗

〉)
︸                                              ︷︷                                              ︸

(II)

.

By Theorem 4.5, we get

(II) ≤ *
,
2K +

Ψ2

2

K∑
k=1

���S
(k ) ���

���A
(k ) ��� +

5

2

mK2Ψ2+
-

√
T . (25)

We then bound (I). Consider each time slot t ∈ {0, 1, · · · ,T − 1}. We have

E
(〈

f (k )t ,θ
(k )
t

〉)
=

∑
s ∈S (k )

∑
a∈A (k )

E
(
dπ (k )

t
(s )π (k )

t (a |s ) f (k )t (a, s )
)

E
(
f (k )t (a (k )t , s

(k )
t )��� d0,P

)
=

∑
s ∈S (k )

∑
a∈A (k )

E
(
v (k )
t (s )π (k )

t (a |s ) f (k )t (a, s )
)
,

where the first equality follows from the definition of θ (k )
t and the second equality follows from the

following: Given a specific function path FT , the policy π
(k )
t and the true state distribution v (k )

t are

fixed. Thus, we have,

E
(
f (k )t (a (k )t , s

(k )
t )��� d0,P,FT

)
=

∑
s ∈S (k )

∑
a∈A (k )

v (k )
t (s )π (k )

t (a |s ) f (k )t (a, s ).
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Taking the full expectation regarding the function path gives the result. Thus,

���E
(
f (k )t (a (k )t , s

(k )
t )��� d0,P

)
− E

(〈
f (k )t ,θ

(k )
t

〉) ���

≤

�������

∑
s ∈S (k )

∑
a∈A (k )

E
((
v (k )
t (s ) − dπ (k )

t
(s )

)
π (k )
t (a |s )

) �������
Ψ

≤E
(



v

(k )
t − dπ (k )

t





1

)
Ψ

≤
τr

(
1 +C

√
m

) ���A
(k ) ���

���S
(k ) ��� Ψ

2

2

√
T

+ 2e−
t
τ r +1Ψ

where the last inequality follows from Lemma 4.10. Thus, it follows,

(I) ≤

T−1∑
t=0

K∑
k=1

*.
,

τr
(
1 +C

√
m

) ���A
(k ) ���

���S
(k ) ��� Ψ

2

2

√
T

+ 2e−
t
τ r +1Ψ+/

-

≤

K∑
k=1

(
τr

(
1 +C

√
m

) ���A
(k ) ���

���S
(k ) ��� Ψ

2

) √
T + 2ΨK

∫ T−1

t=0

e−
x
τ r +1dx

≤τrΨ2

(
1 +C

√
m

) K∑
k=1

���A
(k ) ���

���S
(k ) ��� ·
√
T + 2eΨKτr . (26)

Overall, combining (25),(26) and substituting the constantC = C (m,K ,Ψ,η) defined in (20) gives

the objective regret bound.

For the constraint violation, we have

Gi,T (d0,P ) = E*
,

T−1∑
t=0

K∑
k=1

д(k )i,t (at , st )
������
d0,P+

-
−

T∑
t=1

K∑
k=1

〈
E
(
g(k )
i,t

)
,θt

〉
︸                                                                 ︷︷                                                                 ︸

(IV)

+

T∑
t=1

K∑
k=1

〈
E
(
g(k )
i,t

)
,θt

〉
︸                    ︷︷                    ︸

(V)

.

The term (V) can be readily bounded using Theorem 4.9 as

T−1∑
t=0

E*
,

K∑
k=1

〈
g(k )
i,t ,θ

(k )
t

〉+
-
≤ *

,
C +

K∑
k=1

√
m |A (k ) | |S (k ) |ΨC +

K∑
k=1

|A (k ) | |S (k ) |Ψ2+
-

√
T .

For the term (IV), we have

E
(〈

g(k )
i,t ,θ

(k )
t

〉)
=

∑
s ∈S (k )

∑
a∈A (k )

E
(
dπ (k )

t
(s )π (k )

t (a |s )д(k )i,t (a, s )
)

E
(
д(k )i,t (a

(k )
t , s

(k )
t )��� d0,P

)
=

∑
s ∈S (k )

∑
a∈A (k )

E
(
v (k )
t (s )π (k )

t (a |s )д(k )i,t (a, s )
)
,

where the first equality follows from the definition of θ (k )
t and the second equality follows from the

following: Given a specific function path FT , the policy π
(k )
t and the true state distribution v (k )

t are

fixed. Thus, we have,

E
(
д(k )t (a (k )t , s

(k )
t )��� d0,P,FT

)
=

∑
s ∈S (k )

∑
a∈A (k )

v (k )
t (s )π (k )

t (a |s )д(k )t (a, s ).
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Taking the full expectation regarding the function path gives the result. Then, repeat the same

proof as that of (26) gives

(IV) ≤ τrΨ2

(
1 +C

√
m

) K∑
k=1

���A
(k ) ���

���S
(k ) ��� ·
√
T + 2eΨKτr .

This finishes the proof of constraint violation. □

5 A MORE GENERAL REGRET BOUND AGAINST POLICIES WITH ARBITRARY
STARTING STATE

Recall that Theorem 4.11 compares the proposed algorithm with any randomized stationary policy

Π starting from its stationary state distributiondΠ , so that (dΠ,Π) ∈ G. In this section, we generalize
Theorem 4.11 and obtain a bound of the regret against all (d0,Π) ∈ G where d0 is an arbitrary

starting state distribution (not necessarily the stationary state distribution). The main technical

difficulty doing such a generalization is as follows: For any randomized stationary policy Π such

that (d0,Π) ∈ G, let {θ
(k )
∗ }

K
k=1

be the stationary state-action probabilities such that θ (k )
∗ ∈ Θ

(k )
and

Gi,T (dΠ,Π) =
∑T−1

t=0

∑K
k=1

〈
E
(
gi,t

)
,θ (k )
∗

〉
. For some finite horizon T , there might exist some “low-

cost" starting state distribution d0 such that Gi,T (d0,Π) < Gi,T (dΠ,Π) for some i ∈ {1, 2, · · · ,m}.
As a consequence, one coud have

Gi,T (d0,Π) ≤ 0, and

T−1∑
t=0

K∑
k=1

〈
E
(
gi,t

)
,θ (k )
∗

〉
> 0.

This implies although (d0,Π) is feasible for our true system, its stationary state-action probabilities

{θ (k )
∗ }

K
k=1

can be infeasible with respect to the imaginary constraint set (12), and all our analysis so

far fails to cover such randomized stationary policies.

To resolve this issue, we have to “enlarge” the imaginary constraint set (12) so as to cover all

state-action probabilities {θ (k )
∗ }

K
k=1

arising from any randomized stationary policy Π such that

(d0,Π) ∈ G. But a perturbation of constraint set would result in a perturbation of objective in the

imaginary system also. Our main goal in this section is to bound such a perturbation and show

that the perturbation bound leads to the final O (
√
T ) regret bound.

5.0.1 A relaxed constraint set. We begin with a supporting lemma on the uniform mixing time

bound over all joint randomized stationary policies. The proof is given in Appendix A.3.

Lemma 5.1. Consider any randomized stationary policy Π in (2) with arbitrary starting state
distribution d0 ∈ S

(1) × · · · × S (K ) . Let PΠ be the corresponding transition matrix on the product state
space. Then, the following holds




(d0 − dΠ ) (PΠ )
t 


1

≤ 2e (r1−t )/r1 ,∀t ∈ {0, 1, 2, · · · }, (27)

where r1 is fixed positive constant independent of Π.

The following lemma shows a relaxation of O (1/T ) on the imaginary constraint set (12) is enough

to cover all the {θ (k )
∗ }

K
k=1

discussed at the beginning of this section. The proof is given in Appendix

A.3.
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Lemma 5.2. For any T ∈ {1, 2, · · · } and any randomized stationary policies Π in (2), with arbitrary
starting state distribution d0 ∈ S

(1) × · · · × S (K ) and stationary state-action probability {θ (k )
∗ }

K
k=1

,

T−1∑
t=0

������
E*

,

K∑
k=1

f (k )t (a (k )t , s
(k )
t )

����d0,Π+
-
−

K∑
k=1

〈
E
(
f (k )t

)
,θ (k )
∗

〉������
≤ C1KΨ (28)

T−1∑
t=0

������
E*

,

K∑
k=1

д(k )i,t (a
(k )
t , s

(k )
t )

����d0,Π+
-
−

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )
∗

〉������
≤ C1KΨ (29)

whereC1 is an absolute constant. In particular, {θ
(k )
∗ }

K
k=1

is contained in the following relaxed constraint
set

G
+

:=


θ (k ) ∈ Θ(k ), k = 1, 2, · · · ,K :

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )

〉
≤

C1KΨ

T
, i = 1, 2, · · · ,m

}
.

5.0.2 Best stationary performance over the relaxed constraint set. Recall that the best stationary
performance in hindsight over all randomized stationary policies in the constraint set G can be

obtained as the minimum achieved by the following linear program.

min

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )t

)
,θ (k )

〉
(30)

s .t .
K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )

〉
≤ 0, i = 1, 2, · · · ,m. (31)

On the other hand, if we consider all the randomized stationary policies contained in the original

constraint set (2), then, By Lemma 5.2, the relaxed constraint set G contains all such policies and

the best stationary performance over this relaxed set comes from the minimum achieved by the

following perturbed linear program:

min

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )t

)
,θ (k )

〉
(32)

s .t .
K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )

〉
≤

C1KΨ

T
, i = 1, 2, · · · ,m. (33)

We aim to show that the minimum achieved by (32)-(33) is not far away from that of (30)-(31).

In general, such a conclusion is not true due to the unboundedness of Lagrange multipliers in

constrained optimization. However, since Slater’s condition holds in our case, the perturbation can

be bounded via the following well-known Farkas’ lemma ([5]):

Lemma 5.3 (Farkas’ Lemma). Consider a convex program with objective f (x ) and constraint
function дi (x ), i = 1, 2, · · · ,m:

min f (x ), (34)

s .t . дi (x ) ≤ bi , i = 1, 2, · · · ,m, (35)

x ∈ X, (36)

for some convex set X ⊆ Rn . Let x∗ be one of the solutions to the above convex program. Suppose
there exists x̃ ∈ X such that дi (x̃ ) < 0, ∀i ∈ {1, 2, · · · ,m}. Then, there exists a separation hyperplane
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parametrized by (1, µ1, µ2, · · · , µm ) such that µi ≥ 0 and

f (x ) +
m∑
i=1

µiдi (x ) ≥ f (x∗) +
m∑
i=1

µibi , ∀x ∈ X.

The parameter µ = (µ1, µ2, · · · , µm ) is usually referred to as a Lagrange multiplier. From

the geometric perspective, Farkas’ Lemma states that if Slater’s condition holds, then, there ex-

ists a non-vertical separation hyperplane supported at

(
f (x∗),b1, · · · ,bm

)
and contains the set{(

f (x ),д1 (x ), · · · ,дm (x )
)
, x ∈ X

}
on one side. Thus, in order to bound the perturbation of ob-

jective with respect to the perturbation of constraint level, we need to bound the slope of the

supporting hyperplane from above, which boils down to controlling the magnitude of the Lagrange

multiplier. This is summarized in the following lemma:

Lemma 5.4 (Lemma 1 of [25]). Consider the convex program (34)-(36), and define the Lagrange
dual function

q(µ ) = inf

x ∈X



f (x ) +

m∑
i=1

µi (дi (x ) − bi )


.

Suppose there exists x̃ ∈ X such that дi (x̃ ) − bi ≤ −η, ∀i ∈ {1, 2, · · · ,m} for some positive constant
η > 0. Then, the level setVµ̄ =

{
µ1, µ2, · · · , µm ≥ 0, q(µ ) ≥ q(µ̄ )

}
is bounded for any nonnegative µ̄.

Furthermore, we have

max

µ ∈Vµ̄
∥µ∥2 ≤

1

min1≤i≤m
{
−дi (x̃ ) + bi

} ( f (x̃ ) − q(µ̄ )) .
The technical importance of these two lemmas in the current context is contained in the following

corollary.

Corollary 5.5. Let
{
θ (k )
∗

}K
k=1

and
{
θ
(k )
∗

}K
k=1

be solutions to (30)-(31) and (32)-(33), respectively.

Then, the following holds

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )t

)
,θ

(k )
∗

〉
≥

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ (k )
∗

〉
−
C1K

2
√
mΨ2

ηT

where η is the constant defined in Assumption 2.3.

Proof of Corollary 5.5. Take

f
(
θ (1), · · · ,θ (K )

)
=

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ (k )

〉
,

дi
(
θ (1), · · · ,θ (K )

)
=

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )

〉
,

X = Θ(1) × Θ(2) × · · · × Θ(K ),

and bi = 0 in Farkas’ Lemma and we have the following display

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ (k )

〉
+

m∑
i=1

µi

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )

〉
≥

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ (k )
∗

〉
,
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for any

(
θ (1), · · · ,θ (K )

)
∈ X and some µ1, µ2, · · · , µm ≥ 0. In particular, substituting

(
θ
(1)

∗ , · · · ,θ
(K )

∗

)
into the above display gives

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ

(k )
∗

〉
≥

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ (k )
∗

〉
−

m∑
i=1

µi

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ

(k )
∗

〉

≥
1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ (k )
∗

〉
−
C1KΨ

T

m∑
i=1

µi , (37)

where the final inequality follows from the fact that

(
θ
(1)

∗ , · · · ,θ
(K )

∗

)
satisfies the relaxed constraint∑K

k=1

〈
E
(
g(k )
i,t

)
,θ

(k )
∗

〉
≤

C1KΨ
T and µi ≥ 0, ∀i ∈ {1, 2, · · · ,m}. Now we need to bound the magnitude

of Lagrange multiplier (µ1, · · · , µm ). Note that in our scenario,

����f
(
θ (1), · · · ,θ (K )

) ���� =
������

1

T

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ (k )

〉������
≤ ΨK ,

and the Lagrange multiplier µ is the solution to the maximization problem

max

µi ≥0,i ∈{1,2, · · · ,m }
q(µ ),

where q(µ ) is the dual function defined in Lemma 5.4. thus, it must be in any super level set

Vµ̄ =
{
µ1, µ2, · · · , µm ≥ 0, q(µ ) ≥ q(µ̄ )

}
. In particular, taking µ̄ = 0 in Lemma 5.4 and using Slater’s

condition (8), we have there exists θ̃ (1), · · · , θ̃ (K )
such that

m∑
i=1

µi ≤
√
m∥µ∥2 ≤

√
m

η

(
f

(
θ̃ (1), · · · , θ̃ (K )

)
− inf

(θ (1), · · · ,θ (K ) )∈X
f

(
θ (1), · · · ,θ (K )

)+
-
≤

2

√
mΨK

η
,

where the final inequality follows from the deterministic bound of | f (θ (1), · · · ,θ (K ) ) | by ΨK .
Substituting this bound into (37) gives the desired result. □

As a simple consequence of the above corollary, we have our final bound on the regret and

constraint violation regarding any (d0,Π) ∈ G.

Theorem 5.6. Let P be the sequence of randomized stationary policies resulting from the proposed
algorithm with V =

√
T and α = T . Let d0 be the starting state of the proposed algorithm. For any

randomized stationary policy Π starting from the state d0 such that (d0,Π) ∈ G, we have

FT (d0,P ) − FT (d0,Π) ≤ O *
,
m3/2K2

K∑
k=1

���A
(k ) ���

���S
(k ) ��� ·
√
T +

-
,

Gi,T (d0,P ) ≤ O *
,
m3/2K2

K∑
k=1

���A
(k ) ���

���S
(k ) ��� ·
√
T +

-
, i = 1, 2, · · · ,m.

Proof. Let Π∗ be the randomized stationary policy corresponding to the solution {θ (k )
∗ }

K
k=1

to

(30)-(31) and let Π be any randomized stationary policy such that (d0,Π) ∈ G. SinceGi,T (dΠ∗ ,Π∗) =∑T−1

t=0

∑K
k=1

〈
E
(
gi,t

)
,θ (k )
∗

〉
≤ 0, it follows (dΠ∗ ,Π∗) ∈ G. By Theorem 4.11, we know that

FT (d0,P ) − FT (dΠ∗ ,Π∗) ≤ O
*
,
m3/2K2

K∑
k=1

���A
(k ) ���

���S
(k ) ��� ·
√
T +

-
,
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and Gi,T (d0,P ) satisfies the bound in the statement. It is then enough to bound FT (dΠ∗ ,Π∗) −
FT (d0,Π). We split it in to two terms:

FT (dΠ∗ ,Π∗) − FT (d0,Π) ≤ FT (dΠ∗ ,Π∗) − FT (dΠ,Π)︸                         ︷︷                         ︸
(I)

+ FT (dΠ,Π) − FT (d0,Π)︸                      ︷︷                      ︸
(II)

.

By (28) in Lemma 5.2, the term (II) is bounded by C1KΨ. It remains to bound the first term. Since

(d0,Π) ∈ G, by Lemma 5.2, the corresponding state-action probabilities {θ (k ) }Kk=1
of Π satisfies∑K

k=1

〈
E
(
gi,t

)
,θ (k )

〉
≤ C1KΨ/T and {θ (k ) }Kk=1

is feasible for (32)-(33). Since {θ
(k )
∗ }

K
k=1

is the solution

to (32)-(33), we must have

FT (dΠ,Π) =
T−1∑
t=0

K∑
k=1

〈
E
(
f (k )t

)
,θ (k )

〉
≥

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )t

)
,θ

(k )
∗

〉
On the other hand, by Corollary 5.5,

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )t

)
,θ

(k )
∗

〉
≥

T−1∑
t=0

K∑
k=1

〈
E
(
f (k )

)
,θ (k )
∗

〉
−
C1K

2
√
mΨ2

η
= FT (dΠ∗ ,Π∗) −

C1K
2
√
mΨ2

η
.

Combining the above two displays gives (I) ≤
C1K 2

√
mΨ2

η and the proof is finished. □

6 CONCLUSION
This paper considers online learning over weakly coupled MDPs where the coupling comes from

the global constraint functions, and the time varying objective and constraint functions can only be

observed after the decision is made. We develop a new algorithm along with a new framework for

analysis guaranteeing O (
√
T ) regret and constraint violation simultaneously. The analysis proceeds

by first proving O (
√
T ) regret and constraint violation on an imaginary system where stationary

distribution is reached instantly every time slot after the decision is made, and then bounding

the error between the true system and the imaginary system via an slow-update property of the

algorithm.

Note that the current algorithm and analysis assume the full knowledge of the transition probabil-

ities of underlying MDPs and the condition that the decision maker can observe the entire objective

and constraint functions over all state-action pairs each slot after the decision is made. It would be

interesting if one can relax the above assumptions, and develop algorithms with competitive regret

and constraint violation bounds. Specifically, the following two scenarios are worth exploring:

• Bandit setting: The decision maker can only observe the objective and constraint functions’

values corresponding to the actions on the current MDP state as oppose to those of all MDP

states.

• MDP with unknown parameters: The decision maker has no knowledge on the state space

and/or transition probabilities corresponding to different actions of the underlying MDP.
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A ADDITIONAL PROOFS
A.1 Missing proofs in Section 2.4
We prove Lemma 2.6 and 2.7 in this section.

Proof of Lemma 2.6. For simplicity of notations, we drop the dependencies on k throughout

this proof. We first show that for any r ≥ r̂ , where r̂ is specified in Assumption 2.1, Pπ1
Pπ2
· · · Pπr

is a strictly positive stochastic matrix.

Since the MDP is finite state with a finite action set, the set of all pure policies (Definition

2.2) is finite. Let P1, P2, · · · , PN be probability transition matrices corresponding to these pure

policies. Consider any sequence of randomized stationary policies π1, · · · ,πr . Then, it follows their
transition matrices can be expressed as convex combinations of pure policies, i.e.

Pπ1
=

N∑
i=1

α (1)
i Pi , Pπ2

=

N∑
i=1

α (2)
i Pi , · · · , Pπr =

N∑
i=1

α (r )
i Pi ,

where

∑N
i=1

α (j )
i = 1, ∀j ∈ {1, 2, · · · , r } and α (j )

i ≥ 0. Thus, we have the following display

Pπ1
Pπ2
· · · Pπr =

*
,

N∑
i=1

α (1)
i Pi+

-
*
,

N∑
i=1

α (2)
i Pi+

-
· · · *

,

N∑
i=1

α (r )
i Pi+

-
=

∑
(i1, · · · ,ir )∈Gr

α (1)
i1 · · ·α

(r )
ir · Pi1 Pi2 · · · Pir , (38)

where Gr ranges over all N
r
configurations.

Since

(∑N
i=1

α (1)
i

)
· · ·

(∑N
i=1

α (r )
i

)
= 1, it follows (38) is a convex combination of all possible se-

quences Pi1 Pi2 · · · Pir . By assumption 2.1, we have Pi1 Pi2 · · · Pir is strictly positive for any (i1, · · · , ir ) ∈
Gr , and there exists a universal lower bound δ > 0 of all entries of Pi1 Pi2 · · · Pir ranging over all
configurations in (i1, · · · , ir ) ∈ Gr . This implies Pπ1

Pπ2
· · · Pπr is also strictly positive with the

same lower bound δ > 0 for any sequences of randomized stationary policies π1, · · · ,πr .
Now, we proceed to prove the mixing bound. Choose r = r̂ and we can decompose any

Pπ1
Pπ2
· · · Pπr as follows:

Pπ1
· · · Pπr = δΠ + (1 − δ )Q,

where Π has each entry equal to 1/ |S| (recall that |S| is the number of states which equals the

size of the matrix) and Q depends on π1, · · · ,πr . Then, Q is also a stochastic matrix (nonnegative
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and row sum up to 1) because both Pπ1
· · · Pπr and Π are stochastic matrices. Thus, for any two

distribution vectors d1 and d2, we have

(d1 − d2) Pπ1
· · · Pπr = δ (d1 − d2) Π + (1 − δ ) (d1 − d2) Q = (1 − δ ) (d1 − d2) Q,

where we use the fact that for distribution vectors

(d1 − d2) Π =
1

|S|
1 −

1

|S|
1 = 0.

Since Q is a stochastic matrix, it is non-expansive on ℓ1-norm, namely, for any vector x , ∥xQ∥1 ≤
∥x ∥1. To see this, simply compute

∥xQ∥1 =
|S |∑
j=1

�������

|S |∑
i=1

xiQi j

�������
≤

|S |∑
j=1

|S |∑
i=1

���xiQi j
��� =

|S |∑
j=1

|S |∑
i=1

|xi |Qi j =

|S |∑
i=1

|xi | = ∥x ∥1. (39)

Overall, we obtain,



(d1 − d2) Pπ1
· · · Pπr



1
= (1 − δ ) 

(d1 − d2) Q

1

≤ (1 − δ ) ∥d1 − d2∥1 .

We can then take τ = − 1

log(1−δ ) to finish the proof. □

Proof of Lemma 2.7. Since the probability transitionmatrix of any randomized stationary policy

is a convex combination of those of pure policies, it is enough to show that the product MDP

is irreducible and aperiodic under any joint pure policy. For simplicity, let st =
(
s (1), · · · , s (K )

)
and at =

(
a (1), · · · ,a (K )

)
. Consider any joint pure policy Π which select a fixed joint action

a ∈ A (1) × · · · × A (K )
given a joint state s ∈ S (1) × · · · × S (K )

, with probability 1. By Assumption

2.2, we have

Pr
(
s (1)t+1
, · · · , s (K )

t+1

���s
(1)
t , · · · , s

(K )
t ,a

(1)
t , · · · ,a

(K )
t

)
=Pr

(
s (1)t+1

���s
(1)
t , · · · , s

(K )
t ,a

(1)
t , · · · ,a

(K )
t , s

(2)
t+1
, · · · , s (K )

t+1

)
· Pr

(
s (2)t+1
, · · · , s (K )

t+1

���s
(1)
t , · · · , s

(K )
t ,a

(1)
t , · · · ,a

(K )
t

)
=Pr

(
s (1)t+1

���s
(1)
t ,a

(1)
t

)
Pr

(
s (2)t+1
, · · · , s (K )

t+1

���s
(1)
t , · · · , s

(K )
t ,a

(1)
t , · · · ,a

(K )
t

)
= · · · =

K−1∏
k=1

Pr
(
s (k )t+1

���s
(k )
t ,a

(k )
t

)
· Pr

(
s (K )
t+1

���s
(1)
t , · · · , s

(K )
t ,a

(1)
t , · · · ,a

(K )
t

)
=

K∏
k=1

Pr
(
s (k )t+1

���s
(k )
t ,a

(k )
t

)
, (40)

where the second equality follows from the independence relation in Assumption 2.2. Thus, we

obtain the equality,

Pr (st+1 = s′���st = s, at = a) =
K∏
k=1

Pr
(
s (k )t+1
= s̃ (k ) ���s

(k )
t = s (k ),a (k )t = a (k )

)
,
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Then, the one step transition probability between any two states s, s̃ ∈ S (1) × · · · × S (K )
can be

computed as

Pr (st+1 = s̃���st = s) =
∑

a
Pr (st+1 = s̃���st = s, at = a) · Pr (at = a���st = s)

=
∑

a

K∏
k=1

Pr
(
s (k )t+1
= s̃ (k ) ���s

(k )
t = s (k ),a (k )t = a (k )

)
· Pr (at = a���st = s)

=

K∏
k=1

Pa (k ) (s)

(
s (k ), s̃ (k )

)
,

where we can remove the summation on a due to the fact that at is a pure policy. The notation
a (k ) (s) denotes a fixed mapping from product state space S (1) × · · · × S (K )

to an individual action

spaceA (k )
resulting from the pure policy, and Pa (k ) (s)

(
s (k ), s̃ (k )

)
is the Markov transition probability

from state s (k ) to s̃ (k ) under the action a (k ) (s). One can then further compute the r (r ≥ 2) step

transition probability from between any two states s, s̃ ∈ S (1) × · · · × S (K )
as

Pr (st+r = s̃���st = s) =
∑

st+r−1

· · ·
∑
st+1

K∏
k=1

Pa (k ) (s)

(
s (k ), s (k )t+1

)
·

K∏
k=1

Pa (k ) (st+1 )

(
s (k )t+1
, s (k )t+2

)
· · ·

K∏
k=1

Pa (k ) (st+r−1 )

(
s (k )t+r−1

, s̃ (k )
)

=
∑

st+r−1

· · ·
∑
st+1

K∏
k=1

Pa (k ) (s)

(
s (k ), s (k )t+1

)
· Pa (k ) (st+1 )

(
s (k )t+1
, s (k )t+2

)
· · · Pa (k ) (st+r−1 )

(
s (k )t+r−1

, s̃ (k )
)
. (41)

For any k ∈ {1, 2, · · · ,K }, the term

Pa (k ) (s)

(
s (k ), s (k )t+1

)
· Pa (k ) (st+1 )

(
s (k )t+1
, s (k )t+2

)
· · · Pa (k ) (st+r−1 )

(
s (k )t+r−1

, s̃ (k )
)

denotes the probability of moving from s (k ) to s̃ (k ) along a certain path under a certain sequence of

fixed decisions a (k ) (s), a (k ) (st+1), · · · , a
(k ) (st+r−1). Let

s(k ) =
(
s (k )t+1
, s (k )t+2
, · · · , s (k )t+r−1

)
∈ S (k ) × · · · × S (k ), k ∈ {1, 2, · · · ,K }

be the state path of k-th MDP. One can then change the order of summation in (41) and sum over

state paths of each MDP as follows:

(41) =
∑
s(K )

· · ·
∑
s(1)

K∏
k=1

Pa (k ) (s)

(
s (k ), s (k )t+1

)
· Pa (k ) (st+1 )

(
s (k )t+1
, s (k )t+2

)
· · · Pa (k ) (st+r−1 )

(
s (k )t+r−1

, s̃ (k )
)

We would like to exchange the order of the product and the sums so that we can take the path sum

over each individual MDP respectively. However, the problem is that the transition probabilities

are coupled through the actions. The idea to proceed is to first apply a “hard” decoupling by taking

the infimum of transition probabilities of each MDP over all pure policies, and use Assumption 2.1,
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to bound the transition probability from below uniformly. We have

(41) ≥ inf

s(1)

∑
s(K )

· · ·
∑
s(2)

K∏
k=2

Pa (k ) (s)

(
s (k ), s (k )t+1

)
· · · Pa (k ) (st+r−1 )

(
s (k )t+r−1

, s̃ (k )
)

· inf

s(j ), j,1

∑
s(1)

Pa (1) (s)

(
s (1), s (1)t+1

)
· · · Pa (1) (st+r−1 )

(
s (1)t+r−1

, s̃ (1)
)

≥ inf

s(1)

∑
s(K )

· · ·
∑
s(2)

K∏
k=2

Pa (k ) (s)

(
s (k ), s (k )t+1

)
· · · Pa (k ) (st+r−1 )

(
s (k )t+r−1

, s̃ (k )
)

· inf

π (1)
1

, · · · ,π (1)
r

∑
s(1)

Pπ (1)
1

(
s (1), s (1)t+1

)
· · · Pπ (1)

r

(
s (1)t+r−1

, s̃ (1)
)
,

where π (1)
1
, · · · ,π (1)

r range over all pure policies, and the second inequality follows from the fact

that fix any path of other MDPs (i.e. s(j ), j , 1), the term∑
s(1)

Pa (1) (s)

(
s (1), s (1)t+1

)
· · · Pa (1) (st+r−1 )

(
s (k )t+r−1

, s̃ (1)
)

is the probability of reaching s̃ (1) from s (1) in r steps using a sequence of actionsa (1) (s(1) ), · · · ,a (1) (s(1)t+r−1
),

where each action is a deterministic function of the previous state at the 1-st MDP only. Thus, it

dominates the infimum over all sequences of pure policies π (1)
1
, · · · ,π (1)

r on this MDP. Similarly,

we can decouple the rest of the sums and obtain the follow display:

(41) ≥

K∏
k=1

inf

π (k )
1

, · · · ,π (k )
r

∑
s(k )

Pπ (k )
1

(
s (k ), s (k )t+1

)
· · · Pπ (k )

r

(
s (k )t+r−1

, s̃ (k )
)

=

K∏
k=1

inf

π (k )
1

, · · · ,π (k )
r

Pπ (k )
1

, · · · ,π (k )
r

(
s (k ), s̃ (k )

)
,

where Pπ (k )
1

, · · · ,π (k )
r

(
s (k ), s̃ (k )

)
denotes the

(
s (k ), s̃ (k )

)
-th entry of the product matrix P(k )

π (k )
1

· · · P(k )

π (k )
r
.

Now, by Assumption 2.1, there exists a large enough integer r̂ such that P(k )

π (k )
1

· · · P(k )

π (k )
r

is a strictly

positive matrix for any sequence of r ≥ r̂ randomized stationary policy. As a consequence, the

above probability is strictly positive and (41) is also strictly positive.

This implies, if we choose s̃ = s, then, starting from any arbitrary product state s ∈ S (1)×· · ·×S (K )
,

there is a positive probability of returning to this state after r steps for all r ≥ r̂ , which gives the

aperiodicity. Similarly, there is a positive probability of reaching any other composite state after r
steps for all r ≥ r̂ , which gives the irreducibility. This implies the product state MDP is irreducible

and aperiodic under any joint pure policy, and thus, any joint randomized stationary policy.

For the second part of the claim, we consider any randomized stationary policy Π and the corre-

sponding joint transition probability matrix PΠ , there exists a stationary state-action probability

vector Φ(a, s), a ∈ A (1) × · · · × A (K ), s ∈ S (1) × · · · × S (K )
, such that∑

a
Φ(a, s̃) =

∑
s

∑
a

Φ(a, s)Pa (s, s̃), ∀s̃ ∈ S (1) × · · · × S (K ) . (42)
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Then, the state-action probability of the k-th MDP is θ (k ) (a (k ), s̃ (k ) ) =
∑

s̃ (j ),a (j ), j,k Φ(a, s̃). Thus,

∑
a (k )

θ (k ) (a (k ), s̃ (k ) ) =
∑

s̃ (j ), j,k

∑
a

Φ(a, s̃) =
∑

s

∑
a

Φ(a, s)
∑

s̃ (j ), j,k

Pa (s, s̃)

=
∑

s

∑
a

Φ(a, s) · Pr
(
s̃ (k ) |a, s

)
=

∑
s

∑
a

Φ(a, s) · Pr
(
s̃ (k ) |a (k ), s (k )

)
=

∑
a (k )

∑
s (k )

θ (k ) (a (k ), s̃ (k ) ) · Pr
(
s̃ (k ) |a (k ), s (k )

)
=

∑
a (k )

∑
s (k )

θ (k ) (a (k ), s̃ (k ) ) · Pa (k )

(
s (k ), s̃ (k )

)

where the third from the last inequality follows from Assumption 2.2. This finishes the proof. □

A.2 Missing proofs in Section 4.1
Proof of Lemma 4.7. Consider the state-action probabilities { ˜θ (k ) }Kk=1

which achieves the Slater’s

condition in (8). First of all, note that Qi (t ) ∈ Ft−1, ∀t ≥ 1. Then, using the assumption that

{g(k )
i,t−1
}Kk=1

is i.i.d. and independent of all system information up to t − 1, we have

E*
,
Qi (t − 1)

K∑
k=1

〈
g(k )
i,t−1
, ˜θ

〉 ���� Ft−1
+
-
= E*

,

K∑
k=1

〈
g(k )
i,t−1
, ˜θ

〉+
-
Qi (t − 1) ≤ −ηQi (t − 1). (43)

Now, by the drift-plus-penalty bound (15), with θ (k ) = ˜θ (k )
,

∆(t ) ≤ −V
K∑
k=1

〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉
− α

K∑
k=1

∥θ (k )
t − θ

(k )
t−1
∥2

2
+

3

2

mK2Ψ2 +V
K∑
k=1

〈
f (k )t−1
, ˜θ (k ) − θ (k )

t−1

〉
+

m∑
i=1

Qi (t − 1)
K∑
k=1

〈
g(k )
i,t−1
, ˜θ (k )

〉
+ α

K∑
k=1

∥ ˜θ (k ) − θ (k )
t−1
∥2

2
− α

K∑
k=1

∥ ˜θ (k ) − θ (k )
t ∥

2

2

≤4VKΨ +
3

2

mK2Ψ2 +

m∑
i=1

Qi (t − 1)
K∑
k=1

〈
g(k )
i,t−1
, ˜θ (k )

〉
+ α

K∑
k=1

∥ ˜θ (k ) − θ (k )
t−1
∥2

2
− α

K∑
k=1

∥ ˜θ (k ) − θ (k )
t ∥

2

2

where the second inequality follows from Holder’s inequality that

���
〈
f (k )t−1
,θ (k )

t − θ
(k )
t−1

〉��� ≤ ∥f
(k )
t−1
∥∞




θ
(k )
t − θ

(k )
t−1




1

≤ 2Ψ.
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Summing up the drift from t to t + t0 − 1 and taking a conditional expectation E(·|Ft−1) give

E
(
∥Q(t + t0)∥

2

2
− ∥Q(t )∥2

2

����Ft−1

)
≤8VKΨ + 3mK2Ψ2 + 2

m∑
i=1

E*
,

t+t0−1∑
τ=t

Qi (τ − 1)
K∑
k=1

〈
g(k )
i,τ−1
, ˜θ (k )

〉 ����Ft−1
+
-

+ 2αE*
,

K∑
k=1

(
∥ ˜θ (k ) − θ (k )

t−1
∥2

2
− ∥ ˜θ (k ) − θ (k )

t+t0

∥2
2

) ����Ft−1
+
-

≤8VKΨ + 3mK2Ψ2 + 4Kα + 2

m∑
i=1

E*
,

t+t0−1∑
τ=t

Qi (τ − 1)
K∑
k=1

〈
g(k )
i,τ−1
, ˜θ (k )

〉 ����Ft−1
+
-
.

Using the tower property of conditional expectations (further taking conditional expectations

E
(
·
����Ft+t0−1 · · ·

����Ft
)
inside the conditional expectation) and the bound (43), we have

E*
,

t+t0−1∑
τ=t

Qi (τ − 1)
K∑
k=1

〈
g(k )
i,τ−1
, ˜θ (k )

〉 ����Ft−1
+
-

≤ −ηE*
,

t+t0−1∑
τ=t

Qi (τ − 1)
����Ft−1

+
-

≤ −ηt0Qi (t − 1) +
t0 (t0 − 1)

2

Ψ ≤ −ηt0Qi (t ) +
t0 (t0 − 1)

2

Ψ + ηt0KΨ,

where the last inequality follows from the queue updating rule (9) that

|Qi (t − 1) −Qi (t ) | ≤
������

K∑
k=1

〈
g(k )
i,t−2
,θ (k )

t−1

〉������
≤ K ∥g(k )

i,t−2
∥∞∥θ

(k )
t−1
∥1 ≤ KΨ.

Thus, we have

E
(
∥Q(t + t0)∥

2

2
− ∥Q(t )∥2

2

����Ft−1

)
≤ 8VKΨ + 3mK2Ψ2 + 4Kα + t0 (t0 − 1)mΨ + 2mKΨηt0 − 2ηt0

m∑
i=1

Qi (t )

≤ 8VKΨ + 3mK2Ψ2 + 4Kα + t0 (t0 − 1)mΨ + 2mKΨηt0 − 2ηt0∥Qi (t )∥2.

Suppose ∥Qi (t )∥2 ≥
8VKΨ+3mK 2Ψ2+4Kα+t0 (t0−1)mΨ+2mKΨηt0+η2t 2

0

ηt0

, then, it follows,

E
(
∥Q(t + t0)∥

2

2
− ∥Q(t )∥2

2

����Ft−1

)
≤ −ηt0∥Qi (t )∥2,

which implies

E
(
∥Q(t + t0)∥

2

2

����Ft−1

)
≤

(
∥Qi (t )∥2 −

ηt0
2

)
2

Since ∥Qi (t )∥2 ≥
ηt0

2
, taking square root from both sides using Jensen’ inequality gives

E
(
∥Q(t + t0)∥2

����Ft−1

)
≤ ∥Qi (t )∥2 −

ηt0
2

.
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On the other hand, we always have

����∥Q(t + 1)∥2 − ∥Q(t )∥2
���� =

��������

√√√√ m∑
i=1

max



Qi (t ) +

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉
, 0




2

−

√√ m∑
i=1

Qi (t )2

��������

≤
*.
,

m∑
i=1

*
,

K∑
k=1

〈
g(k )
i,t−1
,θ (k )

t

〉+
-

2

+/
-

1/2

≤
√
mKΨ.

Overall, we finish the proof. □

A.3 Missing proofs in Section 5
Proof of Lemma 5.1. Consider any joint randomized stationary policy Π and a starting state

probability d0 on the product state space S (1) × S (2) × · · · × S (K )
. Let PΠ be the corresponding

transition matrix on the product state space. Let dt be the state distribution at time t under Π
and dΠ be the stationary state distribution. By Lemma 2.7, we know that this product state MDP

is irreducible and aperiodic (ergodic) under any randomized stationary policy. In particular, it is

ergodic under any pure policy. Since there are only finitely many pure policies, let PΠ1
, · · · , PΠN be

probability transition matrices corresponding to these pure policies. By Proposition 1.7 of [22] , for

any Πi , i ∈ {1, 2, · · · ,N }, there exists integer τi > 0 such that

(
PΠi

)t
is strictly positive for any

t ≥ τi . Let

τ1 = max

i
τi ,

then, it follows

(
PΠi

)τ1

is strictly positive uniformly for all Πi ’s. Let δ > 0 be the least entry of(
PΠi

)τ1

over all Πi ’s. Following from the fact that the probability transition matrix PΠ is a convex

combination of those of pure policies, i.e. PΠ =
∑N

i=1
αiPΠi , αi ≥ 0,

∑N
i=1

αi = 1, we have (PΠ )
τ1

is

also strictly positive. To see this, note that

(PΠ )
τ1 = *

,

N∑
i=1

αiPΠi
+
-

τ1

≥

N∑
i=1

ατ1

i
(
PΠi

)τ1 > 0,

where the inequality is taken to be entry-wise. Furthermore, the least entry of (PΠ )
τ1

is lower

bounded by δ/N τ1−1
uniformly over all joint randomized stationary policies Π, which follows from

the fact that the least entry of
1

N (PΠ )
τ1

is bounded as

1

N

N∑
i=1

ατ1

i δ ≥
*
,

1

N

N∑
i=1

αi+
-

τ1

δ =
δ

N τ1

.

The rest is a standard bookkeeping argument following from the Markov chain mixing time theory

(Theorem 4.9 of [22]). Let DΠ be a matrix of the same size as PΠ and each row equal to the stationary

distribution dΠ . Let ε = δ/N τ1−1
. We claim that for any integer n > 0, and any Π,

Pτ1n
Π = (1 − (1 − ε )n )DΠ + (1 − ε )nQn , (44)

for some stochastic matrix Q. We use induction to prove this claim. First of all, for n = 1, from the

fact that (PΠ )
τ1

is a positive matrix and the least entry is uniformly lower bounded by ε over all
policies Π, we can write (PΠ )

τ1

as

(PΠ )
τ1 = εDΠ + (1 − ε )Q,

for some stochastic matrix Q, where we use the fact that ε ∈ (0, 1]. Suppose (44) holds for n =
1, 2, · · · , ℓ, we show that it also holds for n = ℓ + 1. Using the fact that DΠPΠ = DΠ and QDΠ = DΠ

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 12. Publication date: March 2018.



Online Learning in Weakly Coupled Markov Decision Processes 12:37

for any stochastic matrix Q, we can write out Pτ1 (ℓ+1)
Π :

Pτ1 (ℓ+1)
Π =Pτ1ℓ

Π Pτ1

Π =
((

1 − (1 − ε )ℓ
)

DΠ + (1 − ε )ℓQℓ
)

Pτ1

Π

=
(
1 − (1 − ε )ℓ

)
DΠPτ1

Π + (1 − ε )ℓQℓPτ1

Π

=
(
1 − (1 − ε )ℓ

)
DΠ + (1 − ε )ℓQℓ (εDΠ + (1 − ε )Q)

=
(
1 − (1 − ε )ℓ

)
DΠ + (1 − ε )ℓQℓ ((1 − (1 − ε ))DΠ + (1 − ε )Q)

=(1 − (1 − ε )ℓ+1)DΠ + (1 − ε )ℓ+1Qℓ+1.

Thus, (44) holds. For any integer t > 0, we write t = τ1n + j for some integer j ∈ [0,τ1) and n ≥ 0.

Then,

(PΠ )
t
− DΠ = (PΠ )

t
− DΠ = (1 − ε )n

(
QnPj

Π − DΠ

)
.

Let PtΠ (i, ·) be the i-th row of PtΠ , then, we obtain

max

i
∥PtΠ (i, ·) − dΠ ∥1 ≤ 2(1 − ε )n ,

where we use the fact that the ℓ1-norm of the row difference is bounded by 2. Finally, for any

starting state distribution d0, we have




d0PtΠ − dΠ



1

=









∑
i

d0 (i )
(
PtΠ (i, ·) − dΠ

)





1

=
∑
i

d0 (i )



PtΠ (i, ·) − dΠ




1

≤ max

i
∥PtΠ (i, ·) − dΠ ∥1 ≤ 2(1 − ε )n .

Take r1 = log
1

1−ε finishes the proof. □

Proof of Lemma 5.2. Let vt ∈ S
(1) × · · · × S (K )

be the joint state distribution at time t under

policy Π. Using the fact that Π is a fixed policy independent of g(k )
i,t and Assumption 2.2 that the

probability transition is also independent of function path given any state and action, the function

g(k )
i,t and state-action pair (a (k )t , s

(k )
t ) are mutually independent. Thus, for any t ∈ {0, 1, 2, · · · ,T − 1}

E*
,

K∑
k=1

д(k )i,t (a
(k )
t , s

(k )
t )

����d0,Π+
-
=

∑
s∈S (1)×···×S (K )

∑
a∈A (1)×···×A (K )

vt (s)Π(a|s)
K∑
k=1

E
(
д(k )i,t (a

(k ), s (k ) )
)
,

where s = [s (1), · · · , s (K )
] and a = [a (1), · · · ,a (K )

] and the latter expectation is taken with respect

to g(k )
i,t (i.e. the random variable wt ). On the other hand, by Lemma 2.7, we know that for any

randomized stationary policy Π, the corresponding stationary state-action probability can be

expressed as {θ (k )
∗ }

K
k=1

with θ (k )
∗ ∈ Θ

(k )
. Thus,

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )

〉
=

∑
s∈S (1)×···×S (K )

∑
a∈A (1)×···×A (K )

dΠ (s)Π(a|s)
K∑
k=1

E
(
д(k )i,t (a

(k ), s (k ) )
)
.
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Hence, we can control the difference:

T−1∑
t=0

������
E*

,

K∑
k=1

д(k )i,t (a
(k )
t , s

(k )
t )

����d0,Π+
-
−

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )
∗

〉������

≤

T−1∑
t=0

�������

∑
s∈S (1)×···×S (K )

∑
a∈A (1)×···×A (K )

(vt (s) − dΠ (s)) Π(a|s)
�������
KΨ

≤KΨ
T−1∑
t=0

∥vt − dΠ ∥1 ≤ 2KΨ
T−1∑
t=0

e (r1−t )/r1 ≤ 2eKΨ

∫ T−1

0

e−t/r1dt = 2er1KΨ,

where the third inequality follows from Lemma 5.1. Taking C1 = 2er1 finishes the proof of (29) and

(28) can be proved in a similar way.

In particular, we have for any randomized stationary policy Π that satisfies the constraint (2),

we have

T ·
K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )
∗

〉
≤

T−1∑
t=0

������
E*

,

K∑
k=1

д(k )i,t (a
(k )
t , s

(k )
t )

����d0,Π+
-
−

K∑
k=1

〈
E
(
g(k )
i,t

)
,θ (k )
∗

〉������

+

T−1∑
t=0

E*
,

K∑
k=1

д(k )i,t (a
(k )
t , s

(k )
t )

����d0,Π+
-
≤ 2er1KΨ + 0 = 2er1KΨ,

finishing the proof. □
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