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Optimality Gaps and Finite Queue Lengths
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Abstract—The backpressure algorithm has been widely used
as a distributed solution to the problem of joint rate control and
routing in multi-hop data networks. By controlling an algorithm
parameter, the backpressure algorithm can achieve an arbitrarily
small utility optimality gap. However, this in turn brings in a
large queue length at each node and hence causes large network
delay. This phenomenon is known as the fundamental utility-
delay tradeoff. The best known utility-delay tradeoff for general
networks is [O(ε), O(1/ε)] and is attained by a backpressure
algorithm based on a drift-plus-penalty technique. This may
suggest that to achieve an arbitrarily small utility optimality
gap, backpressure-based algorithms must incur arbitrarily large
queue lengths. However, this paper proposes a new backpressure
algorithm that has a vanishing utility optimality gap, so utility
converges to exact optimality as the algorithm keeps running,
while queue lengths are bounded throughout by a finite constant.
The technique uses backpressure and drift concepts with a new
method for convex programming.

Index Terms—backpressure algorithm; rate control; routing;
utility-delay tradeoff

I. INTRODUCTION

In multi-hop data networks, the problem of joint rate
control and routing is to accept data into the network to
maximize certain utilities and to make routing decisions at
each node such that all accepted data are delivered to intended
destinations without overflowing any queue in intermediate
nodes. The original backpressure algorithm proposed in the
seminal work [2] by Tassiulas and Ephremides addresses this
problem by assuming that incoming data are given and are
inside the network stability region and develops a routing
strategy to deliver all incoming data without overflowing any
queue. In the context of [2], there is essentially no utility
maximization consideration in the network. The backpressure
algorithm is further extended by a drift-plus-penalty technique
to deal with both utility maximization and queue stability [3],
[4], [5]. Alternative extensions for both utility maximization
and queue stabilization are developed in [6], [7], [8], [9]. The
above extended backpressure algorithms have different dynam-
ics and/or may yield different utility-delay tradeoff results.
However, all of them rely on “backpressure” quantities, which
are the differential backlogs between neighboring nodes.

It has been observed in [10], [6], [8], [11] that the drift-
plus-penalty and other alternative algorithms can be interpreted
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as first order Lagrangian dual type methods for constrained
optimization. In addition, these backpressure algorithms follow
certain fundamental utility-delay tradeoffs. For instance, the
primal-dual type backpressure algorithm in [6] achieves an
O(ε) utility optimality gap with an O(1/ε2) queue length.
That is, a small utility optimality gap (corresponding to a
small ε) is available only at the cost of a large queue length.
The drift-plus-penalty backpressure algorithm [5], which has
the best utility-delay tradeoff among all existing first order
Lagrangian dual type methods for general networks, can only
achieve an O(ε) utility optimality gap with an O(1/ε) queue
length. Under certain restrictive assumptions over the network,
a better [O(ε), O(log(1/ε))] tradeoff is achieved via an expo-
nential Lyapunov function in [12], and an [O(ε), O(log2(1/ε))]
tradeoff is achieved via a LIFO-backpressure algorithm in [13].

Fundamental lower bounds on utility-delay tradeoffs in [14],
[15], [16], [17], [12] show that, for various stochastic network
settings, a large queue delay is unavoidable if a small utility
optimality gap is demanded. These works consider certain
hard problems with stochastic behavior. It leaves open the
question of whether or not performance can be improved for
networks that fall outside these hard cases. The current paper
investigates network flow problems that can be written as
(deterministic) convex programs, which are not restricted to
the prior lower bounds. We pursue the question of whether
or not improved tradeoffs are possible. Can optimal utility be
approached with constant queue sizes?

Recently, there have been many attempts in obtaining
new variations of backpressure algorithms for deterministic
network flow problems by applying Newton’s method to
the Lagrangian dual function. In the recent work [11], the
authors develop a Newton’s method for joint rate control and
routing. However, the utility-delay tradeoff in [11] is still
[O(ε), O(1/ε2)]; and the algorithm requires a centralized pro-
jection step although Newton directions can be approximated
in a distributed manner. Work [18] considers a network flow
control problem where the path of each flow is given (and
hence there is no routing part in the problem), and proposes
a decentralized Newton based algorithm for rate control.
Work [19] considers network routing without an end-to-end
utility and only shows the stability of the proposed Newton
based backpressure algorithm. All of the above Netwon’s
method based algorithms rely on distributed approximations
for the inverse of Hessians, whose computations still require
certain coordinations for the local information updates and
propagations and do not scale well with the network size. In



contrast, the first order Lagrangian dual type methods do not
need global network topology information. Rather, each node
only needs the queue length information of its neighbors.

This paper proposes a new first order Lagrangian dual
type backpressure algorithm that is as simple as the existing
algorithms in [5], [6], [8] but has a better utility-delay tradeoff.
The new backpressue algorithm achieves a vanishing utility
optimality gap that decays like O(1/t), where t is the number
of iterations. It also guarantees that the queue length at
each node is always bounded by a fixed constant of the
same order as the optimal Lagrange multiplier of the net-
work optimization problem. This improves on the utility-delay
tradeoffs of prior work. In particular, it improves the steady-
state [O(ε), O(1/ε2)] utility-delay tradeoff in [6] and the
[O(ε), O(1/ε)] utility-delay tradeoff of the drift-plus-penalty
algorithm in [5], both of which yield an unbounded queue
length to have a vanishing utility optimality gap. Indeed, the
steady-state utility-delay tradeoff of our algorithm is [0, O(1)].
The convergence time to reach this limiting performance
is also faster than prior work. Our algorithm achieves a
zero utility gap and O(1) queue lengths with a fast O(1/t)
convergence rate.

The new backpressure algorithm differs from existing first
order backpressure algorithms in the following aspects:

1) The “backpressure” quantities in this paper are with
respect to newly introduced weights. These are different
from queues used in other backpressure algorithms, but
can still be locally tracked and updated.

2) The rate control and routing decision rule involves a
quadratic term that is similar to a term used in proximal
algorithms [20].

Note that the benefit of introducing a quadratic term in
network optimization has been observed in [21]. Work [21]
developed a distributive rate control algorithm for network
utility maximization (NUM) problems with given routing paths
that can be reformulated as a special case of the problem
treated in this paper. The algorithm of [21] considers a fixed
set of predetermined paths for each session and does not scale
well when treating all (typically exponentially many) possible
paths of a general network. The algorithm proposed in [21] is
not a backpressure type and and uses virtual queues rather than
actual queues. It is interesting to note that the virtual queues
in [21] remain O(1).1 However, the O(1) virtual queue size
does not imply the achieved utility has a fast convergence
(the convergence rate of [21] remains an open question).
In contrast, the algorithm in the current paper uses both a
quadratic term and a modified weight to get an O(1) actual
queue size with a fast O(1/t) convergence rate.

In our conference version [1], the proposed backpressure al-
gorithm has a global algorithm parameter α, which is required
to be chosen based on the total number of links and sessions
in the network. In this paper, the proposed backpressure algo-

1A technique in the proof of Prop 6.3.2 in [22] suggests that in the case of
fixed path routing of [21] and under several other assumptions that include
the implementation of a closest-to-source priority rule, there exists a constant
that bounds the deviation between virtual and actual queues. The technique in
[22] relies on a fixed-path assumption and has bounds that can grow at each
stage k of the path.

rithm allows each node n to locally determine its algorithm
parameter αn based on the number of local link connections.

The network algorithm developed in this paper is based on
our recent work [23] that develops a new convex programming
method with an O(1/t) error decay for general constrained
convex programs (including problems that are nonsmooth, not
strongly convex and have nonlinear constraints). After our con-
ference version [1] and the arXiv preprint [24] of this paper,
Wang and Shroff in [25] studied the same joint rate control and
routing problem considered in this paper and propose another
backpressure algorithm by using the generalized alternating
direction method of multipliers (ADMM) from [26], [27], [28].
While that ADMM approach is very different from ours, the
obtained backpressure algorithm in [25] is remarkably similar
to our algorithm in this paper: It uses identical virtual queues
(up to a constant scaling) and solves source rate and link rate
subproblems with identical structures. One difference is the
two algorithms use different weights for these subproblems.
The other main difference is that at each iteration the algorithm
in [25] requires to update link rates first and then update
source rates based on the new link rate values, while our
algorithm can update link rates and source rates in parallel
since these subproblems are fully decoupled. This is because
the algorithm in [25] is restricted to the sequential update
procedure of ADMM, while our algorithm uses the parallel
methods developed by us in [23] together with the natural
separability of the linear node flow balance constraints.

The algorithm in [25] achieves source rates that satisfy
x[t] → x∗, although a convergence rate for general utility
functions is not given. 2 In contrast, our analysis proves
an explicit O(1/t) optimality deviation for the time average
network utility. This time average starts at time 0 and provides
a performance guarantee for online implementation during
the entire network operation. However, a remarkable property
of the algorithm in [25] is that when the utility is smooth
(i.e., differentiable with Lipschitz continuous gradients) and
strongly convex, then the algorithm in [25] can ensure the
final value of the iterate x[t] converges exponentially fast to
an optimal value x∗. It remains a promising research direction
to investigate whether the fast final iteration convergence also
holds for our algorithm, and to investigate the effect of the
parallel source and link rate update property and different
update rules for weight parameters in the subproblems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a slotted data network with normalized time slots
t ∈ {0, 1, 2, . . .}. This network is represented by a graph
G = (N ,L), where N is the set of nodes and L ⊆ N × N
is the set of directed links. Let |N | = N and |L| = L. This
network is shared by F end-to-end sessions denoted by a set

2According to [26], the authors in [25] conclude their algorithm has
“O(1/t) non-ergodic convergence” defined as ‖x[t]−x[t−1]‖2 ≤ O(1/t),
or equivalently, ‖x[t]−x[t−1]‖ ≤ O(1/

√
t), in [26]. However, this unusual

definition of non-ergodic convergence rate does not imply any convergence
rate of ‖x[t] − x∗‖ or utility optimality gap U(x[t]) − U(x∗) and hence
does not provide insight into convergence behavior that network optimization
concerns. Thus, it has nothing to do with the O(1/t) convergence to optimal
utility we show in the current paper.
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F . For each end-to-end session f ∈ F , the source node Src(f)
and destination node Dst(f) are given but the routes are not
specified. Each session f has a continuous and concave utility
function Uf (xf ) that represents the “satisfaction” received by
accepting xf amount of data for session f into the network
at each slot. Unlike [6], [11] where Uf (·) is assumed to
be differentiable and strongly concave, this paper considers
general concave utility functions Uf (·), including those that
are neither differentiable nor strongly concave. Formally, each
utility function Uf is defined over an interval dom(Uf ), called
the domain of the function. It is assumed throughout that either
dom(Uf ) = [0,∞) or dom(Uf ) = (0,∞), the latter being
important for proportionally fair utilities [29] Uf (x) = log(x)
that have singularities at x = 0 .

Denote the capacity of link l as Cl and assume it is a
fixed and positive constant.3 Define µ

(f)
l as the amount of

session f ’s data routed at link l that is to be determined by our
algorithm. Note that in general, the network may be configured
such that some session f is forbidden to use link l. For each
link l, define Sl ⊆ F as the set of sessions that are allowed
to use link l. The case of unrestricted routing is treated by
defining Sl = F for all links l.

Note that if l = (n,m) with n,m ∈ N , then µ
(f)
l and

Cl can also be respectively written as µ
(f)
(n,m) and C(n,m).

For each node n ∈ N , denote the sets of its incoming
links and outgoing links as I(n) and O(n), respectively.
Note that xf ,∀f ∈ F and µ

(f)
l ,∀l ∈ L,∀f ∈ F are the

decision variables of a joint rate control and routing algorithm.
If the global network topology information is available, the
optimal joint rate control and routing can be formulated as
the following multi-commodity network flow problem:

max
xf ,µ

(f)
l

∑
f∈F

Uf (xf ) (1)

s.t. xf1{n=Src(f)} +
∑
l∈I(n)

µ
(f)
l ≤

∑
l∈O(n)

µ
(f)
l

∀f ∈ F ,∀n ∈ N \ {Dst(f)} (2)∑
f∈F

µ
(f)
l ≤ Cl,∀l ∈ L, (3)

µ
(f)
l ≥ 0,∀l ∈ L,∀f ∈ Sl, (4)

µ
(f)
l = 0,∀l ∈ L,∀f ∈ F \ Sl, (5)
xf ∈ dom(Uf ),∀f ∈ F (6)

where 1{·} is an indicator function; (2) represents the node
flow conservation constraints relaxed by replacing the equality
with an inequality, meaning that the total rate of flow f into
node n is less than or equal to the total rate of flow f out
of the node (since, in principle, we can always send fake
data for departure links when the inequality is loose); and (3)
represents link capacity constraints. Note that for each flow f ,
there is no constraint (2) at its destination node Dst(f) since
all incoming data are consumed by this node.

The above formulation includes network utility maximiza-
tion with fixed paths as special cases. In the case when each

3As stated in [11], this is a suitable model for wireline networks and
wireless networks with fixed transmission power and orthogonal channels.

session only has one single given path, e.g., the network utility
maximization problem considered in [30], we could modify the
sets Sl used in constraints (4) and (5) to reflect this fact. For
example, if link l1 is only used for sessions f1 and f2, then
Sl1 = {f1, f2}. Similarly, the case [21] where each session is
restricted to using links from a set of predefined paths can be
treated by modifying the sets Sl accordingly. See Appendix A
for more discussions.

The solution to problem (1)-(6) corresponds to the optimal
joint rate control and routing. However, to solve this convex
program at a single computer, we need to know the global
network topology and the solution is a centralized one, which
is not practical for large data networks. As observed in [10],
[6], [8], [11], various versions of backpressure algorithms can
be interpreted as distributed solutions to problem (1)-(6) from
first order Lagrangian dual type methods.

Assumption 1: (Feasibility) Problem (1)-(6) has at least one
optimal solution vector [x∗f ;µ

(f),∗
l ]f∈F,l∈L.

Assumption 2: (Existence of Lagrange multipliers) As-
sume the convex program (1)-(6) has Lagrange multipliers
attaining the strong duality. Specifically, define convex set
C = {[xf ;µ

(f)
l ]f∈F,l∈L : (3)-(6) hold}. Assume there exists a

Lagrange multiplier vector λ∗ = [λ
(f),∗
n ]f∈F,n∈N\{Dst(f)} ≥

0 such that

q(λ∗) = max{(1) : (2)-(6)}

where q(λ) = max
[xf ;µ

(f)
l ]∈C

{∑
f∈F Uf (xf ) −∑

f∈F
∑
n∈N\{Dst(f)} λ

(f)
n

[
xf1{n=Src(f)} +

∑
l∈I(n) µ

(f)
l −∑

l∈O(n) µ
(f)
l

]}
is the Lagrangian dual function of problem

(1)-(6) by treating (3)-(6) as a convex set constraint.
Assumptions 1 and 2 hold in most cases of interest. For

example, Slater’s condition guarantees Assumption 2. Since
the constraints (2)-(6) are linear, Proposition 6.4.2 in [31]
ensures that Lagrange multipliers exist whenever constraints
(2)-(6) are feasible and when the utility functions Uf are
either defined over open sets (such as Uf (x) = log(x) with
dom(Uf ) = (0,∞)) or can be concavely extended to open
sets, meaning that there is an ε > 0 and a concave function
Ũf : (−ε,∞) → R such that Ũf (x) = Uf (x) whenever
x ≥ 0.4

Fact 1: (Replacing inequality with equality) If Assump-
tion 1 holds, problem (1)-(6) has an optimal solution vector
[x∗f ;µ

(f),∗
l ]f∈F,l∈L such that all constraints (2) take equalities.

Proof: Note that each µ(f)
l can appear on the left side in

at most one constraint (2) and appear on the right side in at
most one constraint (2). Let [x∗f , µ

(f),∗
l ]f∈F,l∈L be an optimal

solution vector such that at least one inequality constraint (2)
is loose. Note that we can reduce the value of µ(f),∗

l on the
right side of a loose (2) until either that constraint holds with
equality, or until µ(f),∗

l reduces to 0. The objective function
value does not change, and no constraints are violated. We can

4If dom(Uf ) = [0,∞), such concave extension is possible if the right-
derivative of Uf at x = 0 is finite (such as for Uf (x) = log(1 + x)
or Uf (x) = min[x, 3]). Such an extension is impossible for the example
Uf (x) =

√
x because the slope is infinite at x = 0. Nevertheless, Lagrange

multipliers often exist even for these utility functions, such as when Slater’s
condition holds [31].



repeat the process until all inequality constraints (2) are tight.

III. THE NEW BACKPRESURE ALGORITHM

A. Discussion of Various Queueing Models

At each node, an independent queue backlog is maintained
for each session. At each slot t, let xf [t] be the source session
rates; and let µ(f)

l [t] be the link session rates. Some prior
work enforces the constraint (2) via virtual queues Y (f)

n [t] of
the following form:

Y (f)
n [t+ 1] = max

{
Y (f)
n [t] + xf [t]1{n=Src(f)}

+
∑
l∈I(n)

µ
(f)
l [t]−

∑
l∈O(n)

µ
(f)
l [t], 0

}
. (7)

While this virtual equation is a meaningful approximation, it
differs from reality in that new injected data are allowed to
be transmitted immediately, or equivalently, a single packet is
allowed to enter and leave many nodes within the same slot.
Further, there is no clear connection between the virtual queues
Y

(f)
n [t] in (7) and the actual queues in the network. Indeed,

it is easy to construct examples that show there can be an
arbitrarily large difference between the Y

(f)
n [t] value in (7)

and the physical queue size in actual networks (see Appendix
B).

An actual queueing network has queues Z(f)
n [t] with the

following dynamics:

Z(f)
n [t+ 1] ≤max

{
Z(f)
n [t]−

∑
l∈O(n)

µ
(f)
l [t], 0

}
+ xf [t]1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l [t]. (8)

This is faithful to actual queue dynamics and does not allow
data to be retransmitted over multiple hops in one slot. Note
that (8) is an inequality because the new arrivals from other
nodes may be strictly less than

∑
l∈I(n) µ

(f)
l [t] because those

other nodes may not have enough backlog to send. The model
(8) allows for any decisions to be made to fill the transmission
values µ

(f)
l [t] in the case that Z(f)

n [t] ≤
∑
l∈O(n) µ

(f)
l [t],

provided that (8) holds.
This paper develops an algorithm that converges to the

optimal utility defined by problem (1)-(6), and that produces
worst-case bounded queues on the actual queueing network,
that is, with actual queues that evolve as given in (8). To
begin, it is convenient to introduce the following virtual queue
equation

Q(f)
n [t+ 1] =Q(f)

n [t]−
∑

l∈O(n)

µ
(f)
l [t] + xf [t]1{n=Src(f)}

+
∑
l∈I(n)

µ
(f)
l [t], (9)

where Q
(f)
n [t] represents a virtual queue value associated

with session f at node n. At first glance, this model (9)
appears to be only an approximation, perhaps even a worse
approximation than (7), because it allows the Q(f)

n [t] values
to be negative. Indeed, we use Q(f)

n [t] only as virtual queues

to inform the algorithm and do not treat them as actual
queues. However, this paper shows that using these virtual
queues to choose the µ[t] decisions ensures not only that
the desired constraints (2) are satisfied, but that the resulting
µ[t] decisions create bounded queues Z(f)

n [t] in the actual
network, where the actual queues evolve according to (8).
In short, our algorithm can be faithfully implemented with
respect to actual queueing networks, and converges to exact
optimality on those networks.

The next lemma shows that if an algorithm can guarantee
virtual queues Q(f)

n [t] defined in (9) are bounded, then actual
physical queues satisfying (8) are also bounded.

Lemma 1: Consider a network flow problem described by
problem (1)-(6). For all l ∈ L and f ∈ F , let µ(f)

l [t], xf [t] be
decisions yielded by a dynamic algorithm. Suppose Y (f)

n [t],
Z

(f)
n [t], Q

(f)
n [t] evolve by (7)-(9) with initial conditions

Y
(f)
n [0] = Z

(f)
n [0] = Q

(f)
n [0] = 0. If there exists a constant

B > 0 such that |Q(f)
n [t]| ≤ B, ∀t, then

1) Z
(f)
n [t] ≤ 2B +

∑
l∈O(n) Cl for all t ∈ {0, 1, 2, . . .}.

2) Y
(f)
n [t] ≤ 2B +

∑
l∈O(n) Cl for all t ∈ {0, 1, 2, . . .}.

Proof:
1) Fix f ∈ F , n ∈ N \ {Dst(f)}. Define an auxiliary

virtual queue Q̂
(f)
n [t] that is initialized by Q̂

(f)
n [0] =

B+
∑
l∈O(n) Cl and evolves according to (9). It follows

that Q̂(f)
n [t] = Q

(f)
n [t] + B +

∑
l∈O(n) Cl,∀t. Since

Q
(f)
n [t] ≥ −B, ∀t by assumption, we have Q̂

(f)
n [t] ≥∑

l∈O(n) Cl ≥
∑
l∈O(n) µ

(f)
l [t],∀t. This implies that

Q̂
(f)
n [t] also satisfies:

Q̂(f)
n [t+ 1] = max

{
Q̂(f)
n [t]−

∑
l∈O(n)

µ
(f)
l [t], 0

}
+ xf [t]1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l [t],∀t

(10)

which is identical to (8) except the inequality is replaced
by an equality. Since Z(f)

n [0] = 0 < Q̂
(f)
n [0]; and Q̂(f)

n [t]

satisfies (10), by inductions, Z(f)
n [t] ≤ Q̂(f)

n [t],∀t.
Since Q̂

(f)
n [t] = Q

(f)
n [t] + B +

∑
l∈O(n) Cl,∀t

and Q
(f)
n [t] ≤ B, ∀t, we have Q̂

(f)
n [t] ≤ 2B +∑

l∈O(n) Cl,∀t. It follows that Z
(f)
n [t] ≤ 2B +∑

l∈O(n) Cl,∀t.
2) The proof of part (2) is similar and is in Appendix C.

B. The New Backpressure Algorithm

In this subsection, we propose a new backpressure algorithm
that yields source session rates xf [t] and link session rates
µ

(f)
l [t] at each slot such that the physical queues for each

session at each node are bounded by a constant and the time
average utility satisfies

1

t

t−1∑
τ=0

∑
f∈F

Uf (xf [t]) ≥
∑
f∈F

Uf (x∗f )−O(1/t),∀t ≥ 1
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where x∗f are from the optimal solution to (1)-(6). Note that
Jensen’s inequality further implies that∑

f∈F

Uf
(1

t

t−1∑
τ=0

xf [τ ]
)
≥
∑
f∈F

Uf (x∗f )−O(1/t),∀t ≥ 1

The new backpressure algorithm is described in Algorithm
1. Similar to existing backpressure algorithms, the updates in
Algorithm 1 at each node n are fully distributed and only
depend on weights at itself and its neighbor nodes. Unlike
existing backpressure algorithms, the weights used to update
decision variables xf [t] and µ(f)

l [t] are not the virtual queues
Q

(f)
n [t] themselves, rather, they are augmented values W (f)

n [t]
equal to the sum of the virtual queues and the amount of net
injected data in the previous slot t−1. In addition, the updates
involve an additional quadratic term, which is similar to a term
used in proximal algorithms [20].

Algorithm 1 The New Backpressure Algorithm
Let αn > 0,∀n ∈ N be constant parameters. Initialize
xf [−1] = 0, µ(f)

l [−1] = 0,∀f ∈ F ,∀l ∈ L and Q
(f)
n [0] =

0,∀n ∈ N ,∀f ∈ F . At each time t ∈ {0, 1, 2, . . .}, each node
n does the following:
• For each f ∈ F , if node n is not the destination node of

session f , i.e., n 6= Dst(f), then define weight W (f)
n [t]:

W (f)
n [t] =Q(f)

n [t] + xf [t− 1]1{n=Src(f)}

+
∑
l∈I(n)

µ
(f)
l [t− 1]−

∑
l∈O(n)

µ
(f)
l [t− 1].

(11)

If node n is the destination node, i.e., n = Dst(f), then
define W (f)

n [t] = 0. Notify neighbor nodes (nodes k that
can send session f data to node n, i.e., ∀k such that
f ∈ S(k,n)) about this new W

(f)
n [t] value.

• For each f ∈ F , if node n is the source node of session
f , i.e., n = Src(f), choose xf [t] as the solution to

max
xf

Uf (xf )−W (f)
n [t]xf − αn

(
xf − xf [t− 1]

)2
(12)

s.t. xf ∈ dom(Uf ) (13)

• For all (n,m) ∈ O(n), choose {µ(f)
(n,m)[t],∀f ∈ F} as

the solution to the following convex program:

max
µ
(f)

(n,m)

∑
f∈F

(
W (f)
n [t]−W (f)

m [t]
)
µ

(f)
(n,m)

−
(
αn + αm

)∑
f∈F

(
µ

(f)
(n,m) − µ

(f)
(n,m)[t− 1]

)2
(14)

s.t.
∑
f∈F

µ
(f)
(n,m) ≤ C(n,m) (15)

µ
(f)
(n,m) ≥ 0,∀f ∈ S(n,m) (16)

µ
(f)
(n,m) = 0,∀f 6∈ S(n,m) (17)

• For each f ∈ F , if node n is not the destination of f ,
i.e., n 6= Dst(f), update virtual queue Q(f)

n [t+ 1] by (9).

C. Almost Closed-Form Updates in Algorithm 1

This subsection shows the decisions xf [t] and µ
(f)
l [t] in

Algorithm 1 have either closed-form solutions or “almost”
closed-form solutions at each iteration t.

Lemma 2: Let x̂f ≡ xf [t] denote the solution to (12)-(13).
1) Suppose dom(Uf ) = [0,∞) and Uf (xf ) is differen-

tiable. Let ψ(xf ) = U ′f (xf )− 2αnxf + 2αnxf [t− 1]−
W

(f)
n [t]. If ψ(0) ≤ 0, then x̂f = 0; otherwise x̂f is the

root to the equation ψ(xf ) = 0 and can be found by a
bisection search.

2) Suppose dom(Uf ) = (0,∞) and Uf (xf ) = wf log(xf )
for some weight wf > 0. Then:

x̂f =
2αnxf [t− 1]−W (f)

n [t]

4αn

+

√
(W

(f)
n [t]− 2αnxf [t− 1])2 + 8αnwf

4αn
Proof: Omitted for brevity.

The problem (14)-(17) can be represented as follows by
eliminating µ

(f)
(n,m), f 6∈ S(n,m), completing the square and

replacing maximization with minimization. (Note that K =
|S(n,m)| ≤ |F|.)

min
1

2

K∑
k=1

(zk − ak)2 (18)

s.t.
K∑
k=1

zk ≤ b (19)

zk ≥ 0,∀k ∈ {1, 2, . . . ,K} (20)

Lemma 3: The solution to problem (18)-(20) is given by
z∗k = max{0, ak − θ∗},∀k ∈ {1, 2, . . . ,K} where θ∗ ≥ 0 can
be found either by a bisection search (See Appendix D) or by
Algorithm 2 with complexity O(K logK).

Proof: A similar problem where (19) is replaced with an
equality constraint is considered in [32]. The optimal solution
to this quadratic program is characterized by its KKT condition
and a corresponding algorithm can be developed to obtain its
KKT point. A complete proof is presented in Appendix D.

Algorithm 2 Algorithm to solve problem (18)-(20)

1) Check if
∑K
k=1 max{0, ak} ≤ b holds. If yes, let

θ∗ = 0 and z∗k = max{0, ak},∀k ∈ {1, 2, . . . ,K} and
terminate the algorithm; else, continue to the next step.

2) Sort all ak,∈ {1, 2, . . . ,K} in a decreasing order π such
that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(K). Define S0 = 0.

3) For k = 1 to K
• Let Sk = Sk−1 + ak. Let θ∗ = Sk−b

k .
• If θ∗ ≥ 0, aπ(k) − θ∗ > 0 and aπ(k+1) − θ∗ ≤ 0,

then terminate the loop; else, continue to the next
iteration in the loop.

4) Let z∗k = max{0, ak − θ∗},∀k ∈ {1, 2, . . . ,K} and
terminate the algorithm.

Note that step (3) in Algorithm 2 has complexity O(K) and
hence the overall complexity of Algorithm 2 is dominated by
the sorting step (2) with complexity O(K log(K)).



IV. PERFORMANCE ANALYSIS OF ALGORITHM 1

A. Preliminaries

This subsection introduces facts from convex analysis and
some useful additional notation.

Definition 1 (Strongly Concave Functions): Let Z ⊆ Rn be
a convex set. Function f is said to be strongly concave on
Z with modulus α if there exists a constant α > 0 such that
f(z) + 1

2α‖z‖
2 is concave on Z .

By the definition of strongly concave functions, it is easy to
show that if f(z) is concave and α > 0, then f(z)−α‖z−z0‖2
is strongly concave with modulus 2α for any constant z0. The
next lemma shows that a strongly concave function deviates
at least quadratically from its maximum value.

Lemma 4 (Corollary 1 in [23]): Let Z ⊆ Rn be a convex
set. Let function f be strongly concave on Z with modulus α
and zopt be a global maximum of f on Z . Then, f(zopt) ≥
f(z) + α

2 ‖z
opt − z‖2 for all z ∈ Z .

Define column vector y = [xf ;µ
(f)
l ]f∈F,l∈L, which aggre-

gates all optimization variables in problem (1)-(6). For each
f ∈ F , n ∈ N \ {Dst(f)}, define column vector

y(f)
n =

{
[xf ;µ

(f)
l ]l∈I(n)∪O(n) if n = Src(f),

[µ
(f)
l ]l∈I(n)∪O(n) else,

(21)

which is composed of the control actions appearing in each
constraint (2); and introduce a function with respect to y

(f)
n

as

g(f)
n (y(f)

n ) = xf1{n=Src(f)} +
∑
l∈I(n)

µ
(f)
l −

∑
l∈O(n)

µ
(f)
l (22)

Thus, constraint (2) can be rewritten as

g(f)
n (y(f)

n ) ≤ 0,∀f ∈ F ,∀n ∈ N \ {Dst(f)}.

Note that each vector y
(f)
n is a subvector of y and has

length dn + 1 where dn is the degree of node n (the total
number of outgoing links and incoming links) if node n is the
source of session f ; and has length dn if node n is not the
source of session f . Note that components in different vector
variables y

(f)
n can overlap. The vector variables y and y

(f)
n

are introduced only to simplify notation.
The virtual queue update equation (9) can be rewritten as:

Q(f)
n [t+ 1] = Q(f)

n [t] + g(f)
n (y(f)

n [t]). (23)

The weight update equation (11) can be rewritten as:

W (f)
n [t] = Q(f)

n [t] + g(f)
n (y(f)

n [t− 1]). (24)

Define

L(t) =
1

2

∑
f∈F

∑
n∈N\Dst(f)

(
Q(f)
n [t]

)2
(25)

and call it a Lyapunov function. In the remainder of this paper,
double summations are often written compactly as a single
summation, e.g.,∑

f∈F

∑
n∈N\Dst(f)

(
·
) ∆

=
∑
f∈F,

n∈N\Dst(f)

(
·
)
.

Define the Lyapunov drift as

∆[t] = L(t+ 1)− L(t).

The following lemma follows directly from equation (23).
Lemma 5: At each iteration t ∈ {0, 1, . . .} in Algorithm 1,

the Lyapunov drift is given by

∆[t] =
∑
f∈F,

n∈N\Dst(f)

(
Q(f)
n [t]g(f)

n (yfn[t]) +
1

2

(
g(f)
n (yfn[t])

)2)
.

(26)

Proof: Fix f ∈ F and n ∈ N \ Dst(f), we have

1

2

(
Q(f)
n [t+ 1]

)2 − 1

2

(
Q(f)
n [t]

)2
(a)
=

1

2

(
Q(f)
n [t] + g(f)

n (y(f)
n [t])

)2 − 1

2

(
Q(f)
n [t]

)2
=Q(f)

n [t]g(f)
n (yfn[t]) +

1

2

(
g(f)
n (yfn[t])

)2
(27)

where (a) follows from (23).
By the definition of ∆[t], we have

∆[t] =
1

2

∑
f∈F,

n∈N\Dst(f)

((
Q(f)
n [t+ 1]

)2 − (Q(f)
n [t]

)2)
(a)
=

∑
f∈F,

n∈N\Dst(f)

(
Q(f)
n [t]g(f)

n (yfn[t]) +
1

2

(
g(f)
n (yfn[t])

)2)

where (a) follows from (27).

B. Intuitions of Algorithm 1

Recall y = [xf ;µ
(f)
l ]f∈F,l∈L. Define

h(y) =
∑
f∈F

Uf (xf ). (28)

The intuition behind our approach comes from examining
the “drift-plus-penalty” expression from prior Lyapunov based
backpressure type algorithms as in [5]. With ∆[t] given in (26)
being a change of the Lyapunov function, prior backpressure
algorithms would yield

V h(y[t])−∆[t]

=V h(y[t])−Q[t]Tg(y[t])− 1

2
‖g(y[t])‖2︸ ︷︷ ︸
≤B

where V > 0 is an algorithm parameter and Q[t] and g(y[t])

are vectors that concatenate the individual Q(f)
n [t] and g(f)

n (·)
components. Prior algorithms seek to choose y[t] to maximize
the first two terms on the right-hand-side of this expression
over (3)-(6); the quadratic term marked by an underbrace
is bounded by a constant B and results in a B/V error
(which can be made small by increasing the V parameter).
One could eliminate the B term by changing the algorithm to
optimize all three terms (including the 1

2‖g(y[t])‖2 term) but
this would be a nonseparable optimization that is as difficult
as the original problem (1)-(6). Our insight is to approximate
this quadratic term as [g(y[t])]T[g(y[t − 1])], include this
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easy-to-optimize term in the maximization step, and then
compensate for the approximation error by introducing prox-
terms ‖y(f)

n [t]−y
(f)
n [t−1]‖2 together with a strong concavity

argument (which we can rigorously establish even though our
utility function is not necessarily strongly concave). Since this
approach eliminates the B constant, we no longer need the V
parameter to be large, and so we use V = 1.

At each time t, consider choosing a decision vector y[t] that
includes elements in each subvector y

(f)
n [t] to solve problem

(29)-(30). The expression (29) is a modified drift-plus-penalty
expression. Unlike the standard drift-plus-penalty expressions
from [5], the above expression uses weights W (f)

n [t], which
augments each Q(f)

n [t] by g(f)
n (y

(f)
n [t−1]), rather than virtual

queues Q(f)
n [t]. It also includes a “prox”-like term that penal-

izes deviation from the previous y[t−1] vector. This results in
the novel backpressure-type algorithm of Algorithm 1. Indeed,
the decisions in Algorithm 1 were derived as the solution to
problem (29)-(30). This is formalized in the next lemma.

Lemma 6: At each iteration t ∈ {0, 1, . . .}, the action y[t]
jointly chosen in Algorithm 1 is the solution to problem (29)-
(30).

Proof: The proof involves collecting terms associated
with the xf [t] and µ

(f)
l [t] decisions. See Appendix E for

details.
Furthermore, the next lemma relates h(y∗) and h(y[t])

yielded by action y[t] that aggregates all control actions jointly
chosen in Algorithm 1 at each iteration t ∈ {0, 1, . . .}.

Lemma 7: Let y∗ = [x∗f ;µ
(f),∗
l ]f∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g(f)
n (y

(f),∗
n ) =

0,∀f ∈ F ,∀n ∈ N \ Dst(f). If αn ≥ 1
2 (dn + 1),∀n ∈ N ,

where dn is the degree of node n, then the action y[t] =

[xf [t];µ
(f)
l [t]]f∈F,l∈L jointly chosen in Algorithm 1 at each

iteration t ∈ {0, 1, . . .} satisfies

h(y[t]) ≥ h(y∗) + Φ[t]− Φ[t− 1] + ∆[t]

where Φ[t] =
∑
f∈F,n∈N

(
αn1{n6=Dst(f)}‖y

(f),∗
n −y(f)

n [t]‖2+

αn1{n=Dst(f)}
∑
l∈I(n)(µ

(f),∗
l −µ(f)

l [t])2
)

and h(y) is defined
in (28).

Proof: See Appendix F.
It remains to show that this modified backpressure algorithm

leads to fundamentally improved performance.

C. Utility Optimality Gap Analysis

Define column vector Q[t] =
[
Q

(f)
n [t]

]
f∈F,n∈N\{Dst(f)}

as the stacked vector of all virtual queues Q
(f)
n [t] de-

fined in (9). Note that (25) can be rewritten as L(t) =
1
2‖Q[t]‖2. Define vectorized constraints (2) as g(y) =

[g
(f)
n (y

(f)
n )]f∈F,n∈N\Dst(f).

Lemma 8: Let y∗ = [x∗f ;µ
(f),∗
l ]f∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g(f)
n (y

(f),∗
n ) =

0,∀f ∈ F ,∀n ∈ N \ Dst(f). If αn ≥ 1
2 (dn + 1),∀n ∈ N in

Algorithm 1, where dn is the degree of node n, then for all
t ≥ 1,

t−1∑
τ=0

h(y[τ ]) ≥ th(y∗)− ζ +
1

2
‖Q[t]‖2.

where ζ = Φ[−1] =
∑
f∈F,n∈N

(
αn1{n 6=Dst(f)}‖y

(f),∗
n ‖2 +

αn1{n=Dst(f)}
∑
l∈I(n)(µ

(f),∗
l )2

)
is a constant.

Proof: By Lemma 7, we have h(y[τ ]) ≥ h(y∗) + Φ[t]−
Φ[t− 1] + ∆[τ ],∀τ ∈ {0, 1, . . . , t− 1}. Recall ∆[τ ] = L[τ +
1]− L[τ ]. Summing over τ ∈ {0, 1, . . . , t− 1} yields

t−1∑
τ=0

h(y[τ ])

≥th(y∗) +

t−1∑
τ=0

(
Φ[τ ]− Φ[τ − 1]

)
+

t−1∑
τ=0

∆[τ ]

=th(y∗) + Φ[t− 1]− Φ[−1] + L[t]− L[0]

(a)

≥ th(y∗)− Φ[−1] +
1

2
‖Q[t]‖2

where (a) follows from the fact that Φ[t] ≥ 0,∀t, L[t] =
1
2‖Q[t]‖2 and L[0] = 0.

The next theorem summarizes that Algorithm 1 yields a
vanishing utility optimality gap that approaches zero like
O(1/t).

Theorem 1: Let y∗ = [x∗f ;µ
(f),∗
l ]f∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g(f)
n (y

(f),∗
n ) =

0,∀f ∈ F ,∀n ∈ N \ Dst(f). If αn ≥ 1
2 (dn + 1),∀n ∈ N in

Algorithm 1, where dn is the degree of node n, then for all
t ≥ 1, we have

1

t

t−1∑
τ=0

∑
f∈F

Uf (xf [τ ]) ≥
∑
f∈F

Uf (x∗f )− 1

t
ζ,

where ζ is a constant defined in Lemma 8. Moreover, if we
define xf [t] = 1

t

∑t−1
τ=0 xf [τ ],∀f ∈ F , then∑

f∈F

Uf (xf [t]) ≥
∑
f∈F

Uf (x∗f )− 1

t
ζ.

Proof: Recall by (28) that h(y) =
∑
f∈F Uf (xf ). By

Lemma 8, we have
t−1∑
τ=0

∑
f∈F

Uf (xf [τ ]) ≥t
∑
f∈F

Uf (x∗f )− ζ +
1

2
‖Q[t]‖2

(a)

≥ t
∑
f∈F

Uf (x∗f )− ζ.

where (a) follows from the trivial fact that ‖Q[t]‖2 ≥ 0.
Dividing both sides by a factor t yields the first inequality in

this theorem. The second inequality follows from the concavity
of Uf (·) and Jensen’s inequality.

D. Queue Stability Analysis

Lemma 9: Let Q[t], t ∈ {0, 1, . . .} be the virtual queues in
Algorithm 1. For any t ≥ 1,

Q[t] =

t−1∑
τ=0

g(y[τ ])

Proof: This lemma follows directly from the fact that
Q[0] = 0 and queue update equation (9) can be written as
Q[t+ 1] = Q[t] + g(y[t]).



max
y

h(y)−
∑
f∈F,

n∈N\Dst(f)

(
W (f)
n [t]g(f)

n (y(f)
n ) + αn‖y(f)

n − y(f)
n [t− 1]‖2

)
−

∑
f∈F,

n=Dst(f)

αn
∑
l∈I(n)

(µ
(f)
l − µ

(f)
l [t− 1])2 (29)

s.t. (3)-(6) (30)

The next theorem shows the boundedness of all virtual
queues Q(f)

n [t] in Algorithm 1.
Theorem 2: Let y∗ = [x∗f ;µ

(f),∗
l ]f∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g(f)
n (y

(f),∗
n ) =

0,∀f ∈ F ,∀n ∈ N \Dst(f), and λ∗ be a Lagrange multiplier
vector given in Assumption 2. If αn ≥ 1

2 (dn + 1),∀n ∈ N
in Algorithm 1, where dn is the degree of node n, then ∀f ∈
F ,∀n ∈ N \ {Dst(f)}, we have

|Q(f)
n [t]| ≤ ‖Q[t]‖ ≤ 2‖λ∗‖+

√
2ζ,∀t ≥ 1

where ζ is a constant defined in Lemma 8.
Proof: Let q(λ) = supy∈C

{
h(y) − λTg(y)

}
be the

Lagrangian dual function defined in Assumption 2. For all
τ ∈ {0, 1, . . . , }, by Assumption 2, we have

h(y∗) = q(λ∗)
(a)

≥ h(y[τ ])− λ∗,Tg(y[τ ])

where (a) follows from the definition of q(λ∗). Rearranging
terms yields

h(y[τ ]) ≤ h(y∗) + λ∗,Tg(y[τ ]),∀τ ∈ {0, 1, . . .}.

Fix t > 0. Summing over τ ∈ {0, 1, . . . , t− 1} yields
t−1∑
τ=0

h(y[τ ]) ≤th(y∗) +

t−1∑
τ=0

λ∗,Tg(y[τ ])

=th(y∗) + λ∗,T
t−1∑
τ=0

g(y[τ ])

(a)
= th(y∗) + λ∗,TQ[t]

(b)

≤th(y∗) + ‖λ∗‖‖Q[t]‖

where (a) follows form Lemma 9 and (b) follows from
Cauchy-Schwarz inequality.

On the other hand, by Lemma 8, we have
t−1∑
τ=0

h(y[τ ]) ≥ th(y∗)− ζ +
1

2
‖Q[t]‖2.

Combining the last two inequalities and cancelling the com-
mon terms yields

1

2
‖Q[t]‖2 − ζ ≤ ‖λ∗‖‖Q[t]‖

⇒
(
‖Q[t]‖ − ‖λ∗‖

)2 ≤ ‖λ∗‖2 + 2ζ

⇒‖Q[t]‖ ≤ ‖λ∗‖+
√
‖λ∗‖2 + 2ζ

(a)⇒‖Q[t]‖ ≤ 2‖λ∗‖+
√

2ζ

where (a) follows from the basic inequality
√
a+ b ≤

√
a+
√
b

for any a, b ≥ 0.

Thus, for any f ∈ F and n ∈ N \ {Dst(f)}, we have

|Q(f)
n [t]| ≤ ‖Q[t]‖ ≤ 2‖λ∗‖+

√
2ζ.

This theorem shows that the absolute values of all virtual
queues Q(f)

n [t] are bounded by a constant B = 2‖λ∗‖+
√

2ζ
from above. By Lemma 1 and discussions in Section III-A,
the actual physical queues Z

(f)
n [t] evolving via (8) satisfy

Z
(f)
n [t] ≤ 2B +

∑
l∈O(n) Cl,∀t. This is summarized in the

next corollary.
Corollary 1: Let y∗ = [x∗f ;µ

(f),∗
l ]f∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g(f)
n (y

(f),∗
n ) =

0,∀f ∈ F ,∀n ∈ N \Dst(f), and λ∗ be a Lagrange multiplier
vector given in Assumption 2. If αn ≥ 1

2 (dn + 1)2,∀n ∈ N
in Algorithm 1, where dn is the degree of node n, then all
actual physical queues Z(f)

n [t],∀f ∈ F ,∀n ∈ N \ {Dst(f)}
in the network evolving via (8) satisfy

Z(f)
n [t] ≤4‖λ∗‖+ 2

√
2ζ +

∑
l∈O(n)

Cl, ∀t.

where ζ is a constant defined in Lemma 8.
Define vector x∗ = [x∗f ]f∈F and x[t] = [xf [t]]f∈F where

x∗f and xf [t] are defined in Theorem 1. Note that if each
Uf (xf ) is strongly concave with respect to xf , then x∗

is unique by strong concavity. (However, [µ
(f),∗
l ]l∈L is not

necessarily unique.) In this case, Corollary 2 shows x[t]
yielded by Algorithm 1 converges to the unique maximizer
x∗.

Corollary 2: If the conditions in Theorem 1 hold and each
Uf (xf ) is strongly concave with respect to xf , then Algorithm
1 guarantees x[t]→ x∗ as t→∞.

Proof: Assume each Uf (xf ) is strongly concave with
respect to xf with modulus cf . Let c = minf∈F{cf}. By
Assumption 2, we have y∗ = argmaxy∈C{h(y)−λ∗,Tg(y)}.
Recall that h(y) =

∑
f∈F Uf (xf ) and g(y) are separable

since they can be written as the sum of scalar functions
in terms of xf and µ

(f)
l . Thus, x∗f and [µ

(f),∗
l ]f∈F appear

separably and maximize in the left-side of (31) where each
x∗f satisfying (6) maximizes a strongly concave part and each
vector [µ

(f),∗
l ]f∈F satisfying (3)-(5) maximizes a concave part.

Define y[t] = 1
t

∑t−1
τ=0 y[τ ]. Note that y[t] satisfies (3)-(6)

since each y[τ ] is generated by Algorithm 1. By Lemma 4,
for all t ≥ 1,∑

f∈F

Uf (x∗f )− λ∗,Tg(y∗)

≥
∑
f∈F

Uf (xf [t])− λ∗,Tg(y[t]) +
∑
f∈F

cf
2

(x∗f − xf [t])2
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(a)

≥
∑
f∈F

Uf (xf [t])− λ∗,Tg(y[t]) +
c

2
‖x[t]− x∗‖2

(b)
=
∑
f∈F

Uf (xf [t])− λ∗,T
1

t

t−1∑
t=0

g(y[τ ]) +
c

2
‖x[t]− x∗‖2

(c)
=
∑
f∈F

Uf (xf [t])− 1

t
λ∗,TQ(t) +

c

2
‖x[t]− x∗‖2 (31)

where (a) follows from c = minf∈F{cf}; (b) follows from
the linearity of g(·) and the definition of y[t]; and (c) follows
from Lemma 9.

Recall that λ∗,Tg(y∗) = 0 by strong duality of convex
programs (Assumption 2). Thus, (31) implies

c

2
‖x[t]− x∗‖2

≤
∑
f∈F

Uf (x∗f )−
∑
f∈F

Uf (xf [t]) +
1

t
λ∗,TQ(t)

(a)

≤
∑
f∈F

Uf (x∗f )−
∑
f∈F

Uf (xf [t]) +
1

t
‖λ∗‖‖Q(t)‖

(b)

≤ 1

t
ζ +

1

t
‖λ∗‖(2‖λ∗‖+

√
2ζ)

where (a) follows from the Cauchy-Schwarz inequal-
ity; and (b) follows from Theorem 1, which implies∑
f∈F Uf (xf [t]) ≥

∑
f∈F Uf (x∗f )− 1

t ζ,∀t ≥ 1, and Theorem
2, which implies ‖Q(t)‖ ≤ 2‖λ∗‖+

√
2ζ,∀t ≥ 1.

Taking limits t → ∞ on both sides yields that x[t] → x∗

as t→∞.

E. Performance of Algorithm 1

Theorems 1 and 2 together imply that Algorithm 1 with
αn ≥ 1

2 (dn + 1),∀n ∈ N can achieve a vanishing utility
optimality gap that decays like O(1/t), where t is number of
iterations, and guarantees the physical queues at each node
for each session are always bounded by a constant that is
independent of the utility optimality gap.

This is superior to existing backpressure algorithms from
[6], [5], [11] that can achieve O(ε) utility gaps only at the cost
of O(1/ε2) or O(1/ε) queue lengths. To obtain a vanishing
utility gap, existing backpressure algorithms in [6], [5], [11]
necessarily yield unbounded queues. Note that to achieve O(ε)
utility gaps, existing backpressure algorithms in [6], [5], [11]
need to choose an algorithm parameter V = O(1/ε), which
in turn leads to O(V 2) or O(V ) queue lengths. In fact, the
O(1/ε2) queue bound in the primal-dual type backpressure
algorithm [6] is given by V 2‖λ∗‖ + B1 where λ∗ is the
Lagrangian multiplier vector attaining strong duality and B1

is a constant determined by the problem parameters. A recent
work [33] also shows that the O(1/ε) queue bound in the
backpressure algorithm from drift-plus-penalty is of the order
V ‖λ∗‖ + B2 where B2 is also a constant determined by the
problem parameters. Since λ∗ is a constant vector independent
of V and V = O(1/ε), both algorithms are claimed to have
O(1/ε2) or O(1/ε) queue bounds. By Corollary 1, Algorithm
1 guarantees physical queues at each node are bounded by
4‖λ∗‖+B3, where B3 is constant given a problem. Thus, the

constant queue bound guaranteed by Algorithm 1 is typically
smaller than the O(V 2) or O(V ) queue bounds from [6] and
[33] even for a small V . (A small V corresponds to a poor
utility performance for the backpressure algorithms in [6], [5].)

V. NUMERICAL EXPERIMENT

In this section, we consider a simple network with 6 nodes
and 8 links as described in Figure 1. This network has two
sessions: session 1 from node 1 to node 6 has utility function
log(x1) and session 2 from node 3 to node 4 has utility
function 1.5 log(x2). (The log utilities are widely used as
metrics of proportional fairness in data networks [29].) The
routing path of each session is arbitrary as long as data can
be delivered from the source node to the destination node.
For simplicity, assume that each link has capacity 1. The
optimal source session rate to problem (1)-(6) is x∗1 = 1.2
and x∗2 = 1.8 and link session rates, i.e., static routing for
each session, is drawn in Figure 2.
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Session	1:	1->6	

1	
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Fig. 1. A simple network with 6 nodes, 8 links and 2 sessions.
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0.8	

0.8	

Fig. 2. The optimal routing for the network in Figure 1.

To compare the convergence performance of Algorithm 1
and the backpressure algorithm in [5] (with the best utility-
delay tradeoff among all existing backpressure algorithms),
we run both Algorithm 1 with αn = 1

2

(
dn + 1),∀n ∈ N

and the backpressure algorithm in [5] with V = 500 (This
backpressure algorithm [5] yields O(1/V ) utility gaps and
O(V ) queue lengths, where V is the algorithm parameter)
to plot Figure 3. Since each session has a log utility function,
which is strongly convex, by Corollary 2, the running averages
of source rates yielded by Algorithm 1 converge to the optimal
source rates. In fact, our simulation results in Figure 3 show
that per iteration source rates x[t] (without averaging) also
converge to the optimal source rates. It can be observed from
Figure 3 that Algorithm 1 converges to the optimal source rates
faster than the backpressure algorithm in [5]. The backpressure



algorithm in [5] with V = 500 takes around 2500 iterations to
converge to source rates close to (1.2, 1.8) while Algorithm
1 only takes around 400 iterations to converges to (1.2, 1.8)
(as shown in the zoom-in subfigure at the top right corner.) In
fact, the backpressure algorithm in [5] with V = 500 can not
converge to the exact optimal source session rate (1.2, 1.8)
but can only converge to its neighborhood with a distance
gap determined by the value of V . This is an effect from
the fundamental [O(1/V ), O(V )] utility-delay tradeoff of the
backpressure algorithm in [5]. In contrast, Algorithm 1 can
eventually converge to the exact optimal source session rate
(1.2, 1.8). A zoom-in subfigure at the bottom right corner in
Figure 3 verifies this and shows that the source rate for Session
1 in Algorithm 1 converges to 1.2 while the source rate in the
backpressure algorithm in [5] with V = 500 oscillates around
a point slightly larger than 1.2.
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Fig. 3. Convergence performance comparison between Algorithm 1 and the
backpressure algorithm in [5] with V = 500.

Corollary 1 shows that Algorithm 1 guarantees each actual
queue in the network is bounded by constant 4‖λ∗‖+2

√
2ζ+∑

l∈O(n) Cl. Recall that the backpressure algorithm in [5]
can guarantee the actual queues in the network are bounded
by a constant of order V ‖λ∗‖. Figure 4 plots the sum of
actual queue length at each node for Algorithm 1 and the
backpressure algorithm in [5] with V = 10, 100 and 500.
(Recall a larger V in the backpressure algorithm in [5] yields
a smaller utility gap but a larger queue length.) It can be
observed that Algorithm 1 has the smallest actual queue
length (see the zoom-in subfigure) and the actual queue
length of the backpressure algorithm in [5] scales linearly with
respect to V .

VI. CONCLUSION

This paper develops a new first-order Lagrangian dual type
backpressure algorithm for joint rate control and routing in
multi-hop data networks. The new backpressure algorithm
can achieve vanishing utility optimality gaps and finite queue
lengths. This improves the state-of-the-art [O(ε), O(1/ε2)]
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Fig. 4. Actual queue length comparison between Algorithm 1 and the
backpressure algorithm in [5].

or [O(ε), O(1/ε)] utility-delay tradeoff attained by existing
backpressure algorithms [6], [10], [8], [11].

APPENDIX A
NETWORK UTILITY MAXIMIZATION WITH

PREDETERMINED MULTI-PATH

Consider the multi-path network utility maximization in
[21] where each session has multiple given paths. Let xf be
the total source rate of each session f ∈ F . Let Pf be the set
of paths for session f . The link session rate µ(f)

l becomes a
vector µ

(f)
l = [µ

(f,j)
l ]j∈Pf

. (Note that multiple paths for the
same session are allowed to overlap.) Define S(f)

l as the set
of paths for session f that are allowed to use link l. Note that
S(f)
l are determined by the given paths for each session. That

is, if path j for session f uses link l, then j ∈ S(f)
l ; if no given

path for session f uses link l, then S(f)
l = ∅. The multi-path

network utility maximization problem can be formulated as
follows:

max
∑
f∈F

Uf (xf )

s.t. xf1{n=Src(f)} +
∑
l∈I(n)

∑
j∈Pf

µ
(f,j)
l ≤

∑
l∈O(n)

∑
j∈Pf

µ
(f,j)
l ,

∀f ∈ F ,∀n ∈ N \ {Dst(f)}∑
f∈F

∑
j∈Pf

µ
(f,j)
l ≤ Cl,∀l ∈ L,

µ
(f,j)
l ≥ 0,∀l ∈ L,∀f ∈ F ,∀j ∈ S(f)

l ,

µ
(f,j)
l = 0,∀l ∈ L,∀f ∈ F ,∀j ∈ Pf \ S(f)

l ,

xf ∈ dom(Uf ),∀f ∈ F

The above formulation is in the form of problem (1)-(6) except
that the variable dimension is extended.

In this case, Algorithm 1 developed in Section III-B to
solve problem (1)-(6) can be adapted to solve the above multi-
path network utility maximization problem by replacing µ(f)

l
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with
∑
j∈Pf

µ
(f,j)
l in updates (11) and (9); and replacing

subproblem (14)-(17) with

max
µ
(f)

(n,m)

∑
f∈F

(
W (f)
n [t]−W (f)

m [t]
) ∑
j∈Pf

µ
(f,j)
(n,m)

−
(
αn + αm

)∑
f∈F

∑
j∈Pf

(
µ

(f,j)
(n,m) − µ

(f,j)
(n,m)[t− 1]

)2
s.t.

∑
f∈F

∑
j∈Pf

µ
(f)
(n,m) ≤ C(n,m)

µ
(f,j)
(n,m) ≥ 0,∀f ∈ F ,∀j ∈ S(f)

(m,n)

µ
(f,j)
(n,m) = 0,∀f ∈ F ,∀j 6∈ S(f)

(m,n)

which again has the same structure as subproblem (14)-(17)
except that the variable dimension is extended.

APPENDIX B
AN EXAMPLE ILLUSTRATING THE POSSIBLY LARGE GAP

BETWEEN MODEL (7) AND MODEL (8)

Consider a network example shown in Figure 5. The net-
work has 3k+ 1 nodes. Only node 0 is a destination and only
nodes ai, bi, i ∈ {1, 2, . . . , k} can have exogenous arrivals.
Assume all link capacities are equal to 1 and the exogenous
arrivals are periodic with period 2k, as follows:

• Time slot 1: One packet arrives at node a1.
• Time slot 2: One packet arrives at node a2.
• · · ·
• Time slot k: One packet arrives at node ak.
• Time slot k + 1: One packet arrives at node b1.
• Time slot k + 2: One packet arrives at node b2.
• · · ·
• Time slot 2k: One packet arrives at node bk.

Under dynamics (7), each packet arrives on its own slot and
traverses all links of its path to exit on the same slot it arrived.
The queue backlog in each node is 0 for all time.

Under dynamics (8), the first packet arrives at time slot 1
to node a1. This packet visits node a2 at time slot 2, when
the second packet also arrives at a2. One of these packets
is delivered to node a3 at time slot 3, and another packet
also arrives to node 3. The nodes {1, . . . , k} do not have any
exogenous arrivals and act only to delay the delivery of all
packets from the ai nodes. It follows that the link from node
k to node 0 will send exactly one packet over each slot t ∈
{2k+ 1, 2k+ 2, . . . , 2k+ k}. Similarly, the link from bk to 0
sends exactly one packet to node 0 over each of these same
slots. Thus, node 0 receives 2 packets on each slot t ∈ {2k+
1, 2k + 2, . . . , 2k + k}, but can only output 1 packet per slot.
The queue backlog in this node grows linearly and reaches
k + 1 at time 2k + k. Thus, the backlog in node 0 can be
arbitrarily large when k is large. This example demonstrates
that, even when there is only one destination, the deviation
between virtual queues under dynamics (7) and actual queues
under dynamics (8) can be arbitrarily large, even with an out-
degree of at most 1 and an in-degree of at most 2.

a1	 a2	 ak-1	 ak	

b1	 b2	 bk-1	 bk	 0	

1	

2	

k	

Fig. 5. An example illustrating the possibly large gap between queue model
(7) and queue model (8)

APPENDIX C
PROOF OF PART (2) IN LEMMA 1

Fix f ∈ F , n ∈ N \ {Dst(f)}. By (10),

Q̂(f)
n [t+ 1]

= max
{
Q̂(f)
n [t]−

∑
l∈O(n)

µ
(f)
l [t], 0

}
+ xf [t]1{n=Src(f)}

+
∑
l∈I(n)

µ
(f)
l [t]

= max
{
Q̂(f)
n [t] + xf [t]1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l [t]

−
∑

l∈O(n)

µ
(f)
l [t], xf [t]1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l [t]

}
(a)

≥ max
{
Q̂(f)
n [t] + xf [t]1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l [t]

−
∑

l∈O(n)

µ
(f)
l [t], 0

}
where (a) follows from the fact that µ(f)

l [t], xf [t],∀f, l, t are
non-negative. Note that the right side of the above equation
is identical to the right side of (7) except that Y (f)

n (t) is
rewritten as Q̂

(f)
n (t). Since Y

(f)
n (0) = 0 < Q̂

(f)
n (0), by

induction, we have Y
(f)
n [t] ≤ Q̂

(f)
n [t],∀t. Since Q̂

(f)
n [t] =

Q
(f)
n [t] + B +

∑
l∈O(n) Cl,∀t and Q

(f)
n [t] ≤ B, ∀t, we have

Q̂
(f)
n [t] ≤ 2B +

∑
l∈O(n) Cl,∀t. It follows that Y (f)

n [t] ≤
2B +

∑
l∈O(n) Cl,∀t.

APPENDIX D
PROOF OF LEMMA 3

Note that problem (18)-(20) satisfies Slater’s condition.
So the optimal solution to problem (18)-(20) is character-
ized by KKT conditions [34]. Introducing Lagrange mul-
tipliers θ ∈ R+ for inequality constraint

∑K
k=1 zk ≤ b

and ν = [ν1, . . . , νK ]T ∈ RK+ for inequality constraints
zk ≥ 0, k ∈ {1, 2, . . . ,K}. Let z∗ = [z∗1 , . . . , z

∗
K ]T and

(θ∗,ν∗) be any primal and dual pair with the zero duality
gap. By KKT conditions, we have z∗k − ak + θ∗ − ν∗k =

0,∀k ∈ {1, 2, . . . ,K};
∑K
k=1 z

∗
k ≤ b; θ∗ ≥ 0; θ∗

(∑K
k=1 z

∗
k −

b
)

= 0; z∗k ≥ 0,∀k ∈ {1, 2, . . . ,K}; ν∗k ≥ 0,∀k ∈
{1, 2, . . . ,K}; ν∗kz∗k = 0,∀k ∈ {1, 2, . . . ,K}.



Eliminating ν∗k ,∀k ∈ {1, 2, . . . ,K} in all equations yields
θ∗ ≥ ak − z∗k, k ∈ {1, 2, . . . ,K};

∑K
k=1 z

∗
k ≤ b; θ∗ ≥

0; θ∗
(∑K

k=1 z
∗
k − b

)
= 0; z∗k ≥ 0,∀k ∈ {1, 2, . . . ,K}; (z∗k −

ak + θ∗)z∗k = 0,∀k ∈ {1, 2, . . . ,K}.
For all k ∈ {1, 2, . . . ,K}, we consider θ∗ < ak and θ∗ ≥

ak separately:

1) If θ∗ < ak , then θ∗ ≥ ak−z∗k holds only when z∗k > 0,
which by (z∗k−ak+θ∗)z∗k = 0 implies that z∗k = ak−θ∗.

2) If θ∗ ≥ ak, then z∗k > 0 is impossible, because z∗k > 0
implies that z∗k−ak+θ∗ > 0, which together with z∗k > 0
contradicts the slackness condition (z∗k−ak+θ∗)z∗k = 0.
Thus, if θ∗ ≥ ak, we must have z∗k = 0.

Summarizing both cases, we have z∗k = max{0, ak−θ∗},∀k ∈
{1, 2, . . . ,K}, where θ∗ is chosen such that

∑K
k=1 z

∗
k ≤ b,

θ∗ ≥ 0 and θ∗
(∑K

k=1 z
∗
k − b

)
= 0.

To find such θ∗, we first check if θ∗ = 0. If θ∗ = 0
is true, the slackness condition θ∗

(∑K
k=1 z

∗
k − b

)
is guar-

anteed to hold and we need to further require
∑K
k=1 z

∗
k =∑K

k=1 max{0, ak} ≤ b. Thus θ∗ = 0 if and only
if
∑K
k=1 max{0, ak} ≤ b. Thus, Algorithm 2 check if∑K

k=1 max{0, ak} ≤ b holds at the first step and if this is
true, then we conclude θ∗ = 0 and we are done!

Otherwise, we know θ∗ > 0. By the slackness condi-
tion θ∗

(∑K
k=1 z

∗
k − b

)
= 0, we must have

∑K
k=1 z

∗
k =∑K

k=1 max{0, ak − θ∗} = b. To find θ∗ > 0 such that∑K
k=1 max{0, ak−θ∗} = b, we could apply a bisection search

by noting that all z∗k are decreasing with respect to θ∗.
Another algorithm of finding θ∗ is inspired by the obser-

vation that if aj ≥ ai,∀i, j ∈ {1, 2, . . . ,K}, then z∗j ≥ z∗i .
Thus, we first sort all ak in a decreasing order, say π is the
permutation such that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(K); and
then sequentially check if k ∈ {1, 2, . . . ,K} is the index
such that aπ(k) − θ∗ ≥ 0 and aπ(k+1) − θ∗ < 0. To check
this, we first assume k is indeed such an index and solve
the equation

∑k
j=1(aπ(j)−θ∗) = b to obtain θ∗; (Note that in

Algorithm 2, to avoid recalculating the partial sum
∑k
j=1 aπ(j)

for each k, we introduce the parameter Sk =
∑k
j=1 aπ(j) and

update Sk incrementally. By doing this, the complexity of each
iteration in the loop is only O(1).) then verify the assumption
by checking if θ∗ ≥ 0, aπ(k) − θ∗ ≥ 0 and aπ(k+1) − θ∗ ≤ 0.
The algorithm is described in Algorithm 2 and has complexity
O(K log(K)). The overall complexity is dominated by the
step of sorting all ak.

APPENDIX E
PROOF OF LEMMA 6

The objective function (29) can be rewritten as

h(y)−
∑
f∈F,

n∈N\Dst(f)

(
W (f)
n [t]g(f)n (y(f)

n )

+ αn‖y(f)
n − y(f)

n [t− 1]‖2
)

−
∑

f∈F,n=Dst(f)

αn
∑
l∈I(n)

(µ
(f)
l − µ

(f)
l [t− 1])2

(a)
=
∑
f∈F

Uf (xf )

−
∑
f∈F,

n∈N\Dst(f)

W
(f)
n [t]

(
xf1{n=Src(f)}+

∑
l∈I(n) µ

(f)
l
−
∑

l∈O(n) µ
(f)
l

)
−

∑
f∈F,

n∈N\Dst(f)

αn(xf − xf [t− 1])21{n=Src(f)}

−
∑
f∈F,

n∈N\Dst(f)

αn
∑
l∈I(n)

(µ
(f)
l − µ

(f)
l [t− 1])2

−
∑
f∈F,

n∈N\Dst(f)

αn
∑

l∈O(n)

(µ
(f)
l − µ

(f)
l [t− 1])2

−
∑

f∈F,n=Dst(f)

αn
∑
l∈I(n)

(µ
(f)
l − µ

(f)
l [t− 1])2

(b)
=
∑
f∈F

(
Uf (xf )−W (f)

Src(f)[t]xf − αSrc(f)(xf − xf [t− 1])2
)

+
∑

(n,m)∈L

∑
f∈F

(
W (f)
n [t]−W (f)

m [t]
)
µ
(f)

(n,m)

−
∑

(n,m)∈L

(αn + αm)
∑
f∈F

(µ
(f)

(n,m) − µ
(f)

(n,m)[t− 1])2 (32)

where (a) follows from the fact that ‖y(f)
n − y

(f)
n [t −

1]‖2 = (xf − xf [t − 1])21{n=Src(f)} +
∑
l∈I(n)(µ

(f)
l −

µ
(f)
l [t − 1])2 +

∑
l∈O(n)(µ

(f)
l − µ

(f)
l [t − 1])2; and (b)

follows by collecting each linear term µ
(f)
l and each

quadratic term (µ
(f)
l − µ

(f)
l [t − 1])2. In the last step (b),

the quadratic term
∑

(n,m)∈L(αn + αm)
∑
f∈F (µ

(f)
(n,m) −

µ
(f)
(n,m)[t−1])2 is obtained by simply collecting each quadratic

term (µ
(f)
l − µ

(f)
l [t− 1])2 in the last 3 terms in step (a); and

the linear term
∑

(n,m)∈L
∑
f∈F

(
W

(f)
n [t] −W (f)

m [t]
)
µ

(f)
(n,m)

is obtained by noting each link session rate µ
(f)
l ap-

pears twice with opposite signs in the summation term∑
f∈F,n∈N\{Dst(f)}W

(f)
n [t]

(
xf1{n=Src(f)} +

∑
l∈I(n) µ

(f)
l −∑

l∈O(n) µ
(f)
l

)
unless link l flows into Dst(f) and recalling

that W (f)
Dst(f) = 0,∀f ∈ F .

Note that equation (32) is now separable for each scalar
xf and vector [µ

(f)
(n,m)]f∈F . Thus, problem (29)-(30) can be

decomposed into independent smaller optimization problems
in the form of problem (12)-(13) with respect to xf , and in
the form of problem (14)-(17) with respect to µ(f)

(n,m),∀f ∈ F .

APPENDIX F
PROOF OF LEMMA 7

Definition 2 (Lipschitz Continuity): Let Z ⊆ Rn be a convex
set. Function f : Z → Rm is said to be Lipschitz continuous
on Z with modulus β if there exists β > 0 such that ‖f(z1)−
f(z2)‖ ≤ β‖z1 − z2‖ for all z1, z2 ∈ Z .

The following fact summarizes the Lipschitz continuity of
each function g(f)

n (·).
Fact 2: Each function g

(f)
n (·) defined in (22) is Lipschitz

continuous with respect to vector y(f)
n with modulus

βn ≤
√
dn + 1.

where dn is the degree of node n.
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Proof: This fact can be easily shown by noting that each
g

(f)
n (y

(f)
n ) is a linear function with respect to vector y(f)

n and
has at most dn + 1 non-zero coefficients that are equal to ±1.

Now, we are ready to present the main proof.
Note that W (f)

n [t] appears as a known constant in (12). Since
Uf (xf ) is concave and W

(f)
n [t]xf is linear, it follows that

(12) is strongly concave with respect to xf with modulus 2αn.
Since xf [t] is chosen to solve (12)-(13), by Lemma 4, ∀f ∈ F ,
we have

Uf (xf [t])−W
(f)
Src(f)[t]xf [t]− αn(xf [t]− xf [t− 1])2︸ ︷︷ ︸

(33)-I

≥Uf (x∗f )−W
(f)
Src(f)[t]x

∗
f − αn(x

∗
f − xf [t− 1])2 + αn(x

∗
f − xf [t])

2︸ ︷︷ ︸
(33)-II

.

(33)

Similarly, we know (14) is strongly concave with respect to
vector [µf(n,m)]f∈F with modulus 2(αn +αm). By Lemma 4,
∀(n,m) ∈ O(n), we have∑

f∈F

(
W (f)

n [t]−W (f)
m [t]

)
µ
(f)

(n,m)
[t]

−
(
αn+αm

)∑
f∈F

(
µ
(f)

(n,m)
[t]−µ(f)

(n,m)
[t−1]

)2︸ ︷︷ ︸
(34)-I

≥
∑

f∈F

(
W (f)

n [t]−W (f)
m [t]

)
µ
(f),∗
(n,m)

−
(
αn+αm

)∑
f∈F

(
µ
(f),∗
(n,m)

−µ(f)

(n,m)
[t−1]

)2
+
(
αn+αm

)∑
f∈F

(
µ
(f),∗
(n,m)

−µ(f)

(n,m)
[t]
)2︸ ︷︷ ︸

(34)-II

. (34)

Recall that each column vector y
(f)
n defined in (21) is

composed by control actions that appear in each constraint
(2); column vector y = [xf ;µ

(f)
l ]f∈F,l∈L is the collection of

all control actions; and h(y) =
∑
f∈F Uf (xf ). Summing term

(33)-I over all f ∈ F and term (34)-I over all (n,m) ∈ L and
using an argument similar to the proof of Lemma 6 (Recall
that y[t] jointly chosen in Algorithm 1 is to minimize (29) by
Lemma 6) yields∑

f∈F

(33)-I +
∑

(n,m)∈N

(34)-I

=h(y[t])−
∑
f∈F,

n∈N\Dst(f)

(
W (f)
n [t]g(f)n (y(f)

n [t])

+ αn‖y(f)
n [t]− y(f)

n [t− 1]‖2
)

−
∑
f∈F,

n=Dst(f)

αn
∑
l∈I(n)

(µ
(f)
l [t]− µ(f)

l [t− 1])2. (35)

Recall that Φ[t] =
∑
f∈F,n∈N

(
αn1{n 6=Dst(f)}‖y

(f),∗
n −

y
(f)
n [t]‖2 + αn1{n=Dst(f)}

∑
l∈I(n)(µ

(f),∗
l − µ(f)

l [t])2
)
. Sum-

ming term (33)-II over all f ∈ F and term (34)-II over all
(n,m) ∈ L yields

∑
f∈F

(33)-II +
∑

(n,m)∈N

(34)-II

=h(y∗) + Φ[t]− Φ[t− 1]

−
∑
f∈F

∑
n∈N\{Dst(f)}

W (f)
n [t]g(f)

n (y(f),∗
n ), (36)

Combining (33)-(36) and rearranging terms yields

h(y[t])

≥h(y∗) + Φ[t]− Φ[t− 1]−
∑
f∈F,

n∈N\Dst(f)

W (f)
n [t]g(f)

n (y(f),∗
n )

+
∑
f∈F,

n∈N\Dst(f)

(
W (f)
n [t]g(f)

n (y(f)
n [t])

+ αn‖y(f)
n [t]− y(f)

n [t− 1]‖2
)

+
∑
f∈F,

n=Dst(f)

αn
∑
l∈I(n)

(µ
(f)
l [t]− µ(f)

l [t− 1])2

(a)

≥h(y∗) + Φ[t]− Φ[t− 1]

+
∑
f∈F,

n∈N\Dst(f)

(
W (f)
n [t]g(f)

n (y(f)
n [t])

+ αn‖y(f)
n [t]− y(f)

n [t− 1]‖2
)

(b)
=h(y∗) + Φ[t]− Φ[t− 1]

+
∑
f∈F,

n∈N\Dst(f)

(
Q(f)
n [t]g(f)

n (y(f)
n [t])

+ g(f)
n (y(f)

n [t− 1])g(f)
n (y(f)

n [t])

+ αn‖y(f)
n [t]− y(f)

n [t− 1]‖2
)

(37)

where (a) follows from the fact that g(f)
n (y

(f),∗
n ) = 0 and∑

f∈F,n=Dst(f) αn
∑
l∈I(n)(µ

(f)
l [t] − µ

(f)
l [t − 1])2 ≥ 0; (b)

follows from the fact that W (f)
n [t] = Q

(f)
n [t]+g

(f)
n (y

(f)
n [t−1]).

Recall that u1u2 = 1
2u

2
1+ 1

2u
2
2− 1

2 (u1−u2)2 for any u1, u2 ∈
R. Thus, for all f ∈ F , n ∈ N \ Dst(f), we have

g(f)
n (y(f)

n [t− 1])g(f)
n (y(f)

n [t])

=
1

2

(
g(f)
n (y(f)

n [t− 1])
)2

+
1

2

(
g(f)
n (y(f)

n [t])
)2

− 1

2

(
g(f)
n (y(f)

n [t− 1])− g(f)
n (y(f)

n [t])
)2
. (38)

Substituting (38) into (37) yields

h(y[t])

≥h(y∗) + Φ[t]− Φ[t− 1]

+
∑
f∈F,

n∈N\Dst(f)

(
Q(f)
n [t]g(f)

n (y(f)
n [t]) +

1

2

(
g(f)
n (y(f)

n [t− 1])
)2

+
1

2

(
g(f)
n (y(f)

n [t])
)2

− 1

2

(
g(f)
n (y(f)

n [t− 1])− g(f)
n (y(f)

n [t])
)2

+ αn‖y(f)
n [t]− y(f)

n [t− 1]‖2
)



(a)

≥h(y∗) + Φ[t]− Φ[t− 1]

+
∑
f∈F,

n∈N\Dst(f)

(
Q(f)
n [t]g(f)

n (y(f)
n [t]) +

1

2

(
g(f)
n (y(f)

n [t− 1])
)2

+
1

2

(
g(f)
n (y(f)

n [t])
)2

+
(
αn −

1

2
β2
n

)
‖y(f)

n [t]− y(f)
n [t− 1]‖2

)
(b)

≥h(y∗) + Φ[t]− Φ[t− 1]

+
∑
f∈F,

n∈N\Dst(f)

(
Q(f)
n [t]g(f)

n (y(f)
n [t]) +

1

2

(
g(f)
n (y(f)

n [t])
)2)

(39)

where (a) follows from the Fact 2, i.e., each g(f)
n (·) is Lipschitz

with modulus βn and (b) follows from the fact that αn ≥
1
2 (dn + 1), βn ≤

√
dn + 1 and 1

2

(
g

(f)
n (y

(f)
n [t− 1])

)2 ≥ 0.
Substituting (26) into (39) yields

h(y[t]) ≥ h(y∗) + Φ[t]− Φ[t− 1] + ∆[t].
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