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1. LINEARLY CONSTRAINED STO-OPT 4. PERFORMANCE ANALYSIS

e Llinearly constrained stochastic convex programs Under corresponding algorithm parameter rules, to
achieve an O(e) accuracy solution

— General Convex: Alg 1 uses O(1/e?) SGD update rounds
and O(1/¢) inter-node communication rounds.

— Strongly Convex: Alg 1 uses O(1/¢) SGD update rounds

e N arbitrary; Each f;(x;) a Ee[f;(x; €)] with expensive true and O(1/+/€) inter-node communication rounds.

gradient but cheap unbiased stochastic gradient. The # of communication rounds is only the square root of
e Applications that of computation (SGD update) rounds.

— Large scale linearly constrained optimization, e.g,. lin- Lowest computation complexity for stochastic convex opt
ear programs: Too large to store or solve on a single node. with lower communication complexity than other stochas-

— Distributed machine learning: N distributed nodes tic ADMM.
(with possibly non-identical training data) jointly train

a common ML model. 5. EXPERIMENTS

e Convergence rate verification: smooth strongly convex

2. COMMUNICATION EFFICIENT ADMM

ADMM is effective and popular for distributed optimiza-
tion, yet suffers significant communication overhead for
passing Lagrange multipliers.
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This paper develops communication efficient multi-block w0
stochastic ADMM to reduce communication rounds w/o. |
sacrificing convergence.
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3. OUR ALGORITHM
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Algl : Two-Layer Communication Efficient ADMM
Setting algorithm parameters in line with our theory yields

. Input: Algorithm parameters T, {p(")};>1, the (better) proven convergence rates
{V(t) }tzl and {K(t) }tzl’

: Initialize arbitrary y§0) c X;, Vi, °
r0) — Z,fil Aiy,go) — b, A0 — 0,andt = 1.
3: whilet < 7T do — RPDBUS ADMM [Gao et.al. 2016]
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Distributed logistic regression: 10 distributed nodes with
sharded data jointly train a common model
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signed initialization, step size and averaging rules.




