
A Communication Efficient Stochastic Multi-Block
Alternating Direction Method of Multipliers

Hao Yu
Amazon

eeyuhao@gmail.com

Abstract

The alternating direction method of multipliers (ADMM) has recently received
tremendous interests for distributed large scale optimization in machine learning,
statistics, multi-agent networks and related applications. In this paper, we propose a
new parallel multi-block stochastic ADMM for distributed stochastic optimization,
where each node is only required to perform simple stochastic gradient descent
updates. The proposed ADMM is fully parallel, can solve problems with arbitrary
block structures, and has a convergence rate comparable to or better than existing
state-of-the-art ADMM methods for stochastic optimization. Existing stochastic
(or deterministic) ADMMs require each node to exchange its updated primal
variables across nodes at each iteration and hence cause significant amount of
communication overhead. Existing ADMMs require roughly the same number of
inter-node communication rounds as the number of in-node computation rounds.
In contrast, the number of communication rounds required by our new ADMM is
only the square root of the number of computation rounds.

1 Introduction
Fix integer N ≥ 2. Consider multi-block linearly constrained stochastic convex programs given by:

min
xi∈Xi,∀i

f(x) =

N∑
i=1

fi(xi) s.t.
N∑
i=1

Aixi = b, (1)

where xi ∈ Rdi ,Ai ∈ Rm×di ,b ∈ Rm, Xi ⊆ Rdi are closed convex sets, and fi(xi) =
Eξ[fi(xi; ξ)] are convex functions. To have a compact representation of (1), we define x =

[x1;x2; . . . ;xN] ∈ R
∑N
i=1 di , X =

∏N
i=1 Xi, f(x) =

∑N
i=1 fi(xi) and A = [A1,A2, . . . ,AN] ∈

Rm×
∑N
i=1 di . Note that constraint

∑N
i=1 Aixi = b now can be written as Ax = b.

The problem (1) captures many important applications in machine learning, network scheduling,
statistics and finance. For example, (stochastic) linear programs that are too huge to be solved over a
single node can be written as (1). To solve such large scale linear programs in a distributed manner,
we can save each Ai and fi(·) at a separate node and let each node iteratively solves smaller sub-
problems (with necessary inter-node communication). Another important application of formulation
(1) is the distributed consensus training of a machine learning model over N nodes [15, 17, 23]
described as follows:

• In an online training setup, i.i.d. realizations of fi(·; ξ) are sampled at each node. In an offline
training setup, fi(xi) = Eξ[fi(xi; ξ)] are approximated by 1

Ni

∑Ni
j=1 fij(xi) where Ni is the

number of training samples at node i and each fij(·) represents one training sample.
• To enforce all N nodes are training the same model, our constraint Ax = b is given by xi = xj

for all i 6= j ∈ {1, 2, . . . , N}. (In fact, we only need such constraints for pairs (i, j) that construct
a connected graph for all nodes.)

The Alternating Direction Method of Multipliers (ADMM) is an effective and popular method to
solve linearly constrained convex programs, especially distributed consensus optimiation [28, 5],

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

since it often yields distributed implementations with low complexity [4]. Conventional ADMMs are
developed for the special case of problem (1) with N = 2 and/or deterministic fi(xi). To solve a
two-block problem (1) where f1 is a stochastic function and f2 is a deterministic function, previous
works [21, 25, 31, 1] have developed stochastic (two-block) ADMMs to solve problem (1) with
N = 2. It is unclear whether these methods can be extended to solve the caseN ≥ 3. In fact, even for
problem (1) where all fi(xi) are deterministic, [6] proves that the classical (two-block) ADMM, on
which the stochastic versions in [21, 25] are built, converges for N = 2 but diverges for N ≥ 3. To
solve stochastic convex program (1) withN ≥ 3, randomized block coordinate updated ADMMs with
O(1/ε2) convergence are developed in [27, 11]. Due to the challenging stochastic objective functions,
the convergence rate of stochastic ADMMs is fundamentally slower than deterministic ADMMs, i.e.,
O(1/ε2) v.s. O(1/ε) [13, 7, 11]. The O(1/ε2) convergence is optimal since it is optimal even for
unconstrained stochastic convex optimization without strong convexity [20]. However, in distributive
implementations of ADMMs, each node has to pass its most recent xi value to its neighbors or a
fusion center and then updates the dual variable λ. Existing stochastic ADMM methods [21, 25, 11]
require a communication step immediately after each xi computation step. In practice, the inter-node
communication over TCP/IP is much slower than in-node memory computations and often requires
additional set-up time such that communication overhead is the performance bottleneck of most
distributed optimization methods.
As a consequence, communication efficient optimization recently attracted a lot of research interests
[29, 14, 24, 15, 17, 18, 23]. Work [17] proposes a primal-dual method that can solve problem (1)
with stochastic objective functions using O(1/ε2) computation iterations and O(1/ε) communication
iterations. However, the method in [17] requires each objective function fi(·) to satisfy the stringent
condition that there exists M such that fi(u) ≤ fi(v) + 〈d,u− v〉+M‖u− v‖ for any u,v and
d ∈ ∂fi(v) . Such a condition is more stringent than the smoothness when u and v are far apart from
each other. For example, the simple scalar smooth function f(x) = x2 does not satisfy this condition
over X = R. Work [18] proposes a communication efficient method to solve deterministic convex
programs based on the quadratic penalty method and can obtain an ε-optimal solution withO(1/ε2+δ)
computation rounds (δ is a positive constant) and O(1/ε) communication rounds. For distributed
consensus optimization over a network, which can be formulated as a special case of problem (1)
where Ai and b are chosen to ensure all xi are identical, mixing or local averaging based methods
with fast convergence (and low communication overhead) are recently developed in [26, 22, 23, 19].

Our Contributions: This paper proposes a new communication efficient stochastic multi-block
ADMM which has communication rounds less frequently than computation rounds. For stochastic
convex programs with general convex objective functions, our algorithm can achieve an ε-solution
with O(1/ε2) computation1 rounds and O(1/ε) communication rounds. That is, our communication
efficient ADMM has the same computation convergence rate as the ADMM in [11] but only requires
the square root of communication rounds required by the method in [11]. For stochastic convex
programs with strongly convex objective functions, our algorithm can achieve an ε-accuracy solution
with Õ(1/ε) computation rounds and Õ(1/

√
ε) communication rounds2. The fast computation

convergence (and even faster communication convergence) for strongly convex stochastic programs is
not possessed by the ADMM in [11]. When applying our new multi-block ADMM to the special case
of two-block problems, our algorithm has the same computation convergence as existing two-block
stochastic ADMM methods in [21, 25, 31, 1]. However, the number of communication rounds used
by our ADMM is only the squared root of these previous methods.

Notations: This paper uses ‖A‖ to denote the spectral norm of matrix A; ‖z‖ to denote the Euclidean
norm of vector z; and 〈y, z〉 = yTz to denote the inner product of vectors y and z. If symmetric
matrix Q � 0 is positive semi-definite, then we define ‖z‖2Q = zTQz for any vector z.

2 Formulation and New Algorithm
Following the convention in [8], a function h(x) is said to be convex with modulus µ, or equivalently,
µ-convex, if h(x)− µ

2 ‖x‖
2 is convex. The µ-convex definition unifies the conventional definitions of

convexity and strong convexity. That is, a general convex function, which is not necessarily strongly
convex, is convex with modulus µ = 0; and a strongly convex function is convex with modulus µ > 0.
Throughout this paper, convex program (1) is assumed to satisfy the following standard assumption:

1A computation round of our algorithm is a just a single iteration of the SGD update.
2A logarithm factor log(1

ε
) is hidden in the notation Õ(·).

2

Assumption 1. Convex program (1) has a saddle point (x∗,λ∗). That is, x∗ is an optimal solution

and λ∗ ∈ Rm is a Lagrange multiplier attaining strong duality q(λ∗) = f(x∗), where q(λ∗) ∆
=

inf{xi∈Xi,∀i}{f(x) + 〈λ∗,Ax− b〉} is the Lagrangian dual function.

Note that strong duality in Assumption 1 is often stated as its equivalent “KKT conditions”, e.g., in
[7]. A mild sufficient condition for Assumption 1 to hold is (1) has at least one feasible point and the
domain of each fi(xi) includes Xi as an interior [3].

Assume unbiased subgradients Gi(xi; ξ) satisfying Eξ[Gi(xi; ξ)] = ∂fi(xi),∀xi ∈ Xi
for each function fi(xi) can be sampled. Denote the stacked column vector G(x; ξ)

∆
=

[G1(x1; ξ)T, . . . , GN (xN ; ξ)T]T ∈ R
∑N
i=1 di . We have Eξ[G(x; ξ)] = ∂f(x).

Consider the communication efficient stochastic multi-block ADMM described in Algorithm 1.
Since fi(xi) are stochastic, φi(xi) defined in (2) is fundamentally unknown. However, each φi(xi)
is ν(t)-convex and its unbiased stochastic subgradient is available as long as we have unbiased
stochastic subgradients of fi(xi). The sub-procedure STO-LOCAL involved in Algorithm 1 is a
simple stochastic subgradient decent (SGD) procedure (with particular choices of parameters, starting
points and averaging schemes) to minimize φ(t)

i (·) over set Xi and is described in Algorithm 2.

Algorithm 1 Two-Layer Communication Efficient ADMM
1: Input: Algorithm parameters T , {ρ(t)}t≥1, {ν(t)}t≥1 and {K(t)}t≥1.
2: Initialize arbitrary y

(0)
i ∈ Xi,∀i, r(0) =

∑N
i=1 Aiy

(0)
i − b, λ(0) = 0, and t = 1.

3: while t ≤ T do
4: Each node i defines

φ
(t)
i (xi)

∆
=fi(xi) + ρ(t)〈r(t−1) +

1

ρ(t)
λ(t−1),Aixi −

b

N

〉
+
ν(t)

2
‖xi − y

(t−1)
i ‖2 (2)

and in parallel updates x(t)
i ,y

(t)
i using local sub-procedure Algorithm 2 via

(x
(t)
i ,y

(t)
i) = STO-LOCAL(φ

(t)
i (·),Xi,y(t−1)

i ,K(t)) (3)

5: Each node i passes x(t)
i and y

(t)
i between nodes or to a parameter server. Update λ(t) and

r(t) via

λ(t) =λ(t−1) + ρ(t)
(N∑
i=1

Aix
(t)
i − b

)
(4)

r(t) =

N∑
i=1

Aiy
(t)
i − b. (5)

6: Update t← t+ 1.
7: end while
8: Output: x(T) = 1∑T

t=1 ρ
(t)

∑T
t=1 ρ

(t)x(t)

Algorithm 2 STO-LOCAL(φ(z),Z, zinit,K)

1: Input: µ: strong convexity modulus of φ(z); Algorithm parameters: k0 > 0; γ(k) =
2

µ(k+k0) ,∀k ∈ {1, 2, . . . ,K}.
2: Initialize z(0) = zinit and k = 1.
3: while k ≤ K do
4: Observe an unbiased gradient ζ(k) such that E[ζ(k)] = ∂φ(z(k−1)) and update z(k) via

z(k) = PZ
[
z(k−1) − γ(k)ζ(k)

]
(6)

where PZ [·] is the projection onto Z .
5: end while
6: Output: (ẑ, z(K)) where ẑ is the time average of {z(0), . . . , z(K)} defined in Lemmas 1 or 2.

3

We now justify why Algorithm 1 is a two-layer ADMM method. (See Supplement 6.1 for a more
detailed discussion.)

• The Lagrange multiplier update (4) is identical to that used in existing ADMM methods or other
Lagrangian based methods. It is helpful to enforce the linear constraint.

• At the first sight, the primal update in Algorithm (4) is quite different from existing deterministic
ADMMs in [10, 4, 7], which require to solve an “argmin" problem, or stochastic ADMMs in
[21, 25, 11], which perform a single gradient descent step . However, with a simple manipulation,
it is not difficult to show that that function φ(t)

i (xi) in (2) is similar to the “argmin" target in the
proximal Jacobi ADMM method [7] with the distinction that the proximal term ‖xi − y

(t−1)
i ‖2 is

regarding a newly introduced variable y
(t−1)
i rather than x

(t−1)
i .

Recall that the fastest stochastic ADMMs in [21, 25, 11] can solve general convex problem (1) (with
N = 2) with O(1/

√
T) convergence. That is, to obtain a solution with ε errors for both the objective

value and the constraint violation, the ADMMs in [21, 25, 11] require O(1/ε2) computation steps,
each of which uses a single gradient evaluation and variable update. The ADMMs in [21, 25, 11] has a
single layer structure and hence are communication inefficient in the sense that each computation step
involves a communication steps. Thus, the communication complexity of these stochastic ADMMs
is also O(1/ε2). Compared with existing ADMMs in [21, 25, 11], Algorithm 1 has a two layer
structure where each outer layer step involves a single inter-node communication step given by (4)-(5)
and calls the sub-procedure, i.e. Algorithm 2, STO-LOCAL(φ

(t)
i (·),Xi,y(t)

i ,K(t)), which is run by
each node locally and in parallel and hence does not incur any inter-node communication overhead.
Since each call of Algorithm 2 incurs K(t) SGD update, T iterations of Algorithm 1 use

∑T
t=1K

(t)

computation steps. We shall show that to achieve an ε solution for general convex problem (1),
Algorithm 1 uses T = O(1/ε) communication rounds and

∑T
t=1K

(t) = O(1/ε2) computation steps.
That is, Algorithm 1 is as fast as existing fastest stochastic ADMMs but uses only a square root of the
number of communications rounds in [21, 25, 11].

Note that inter-node communication in Algoirthm 1 can be either centralized or decentralized. To use
centralized communication, we can let all nodes pass their x(t)

i to a parameter server, where (4)-(5) are
executed, and then pull the updated λ(t) and r(t) from the server. It is possible to implement (4)-(5)
using decentralized communication by exploring the structure of matrix A = [A1,A2, . . . ,AN]. For
example, consider distributed machine learning in a line network where Ax = b is given by N − 1

equality constraints xi − xi+1 = 0, i ∈ {1, 2, . . . , N − 1}. In this case, λ(t)
i and r

(t)
i only depend on

x
(t)
i and x

(t)
i+1 and are only used to updates x(t+1)

i and x
(t+1)
i+1 . Thus, to implement Algorithm 1, each

node only needs to send its local x(t)
i to and pull λ(t)

j and r
(t)
j from its neighbors in the line network.

2.1 Basic Facts of Algorithm 2
Since each iteration of Algorithm 1 calles Algorithm 2, which essentially applies SGD with carefully
designed step size rules to newly introduced objective functions φ(t)

i (·). This subsection provides
some useful insight of SGD for strongly convex stochastic minimization.

It is known that SGD can have O(1/ε) convergence for strongly convex minimization. The next two
lemmas summarize the convergence of SGD Algorithm 2. When characterizing O(1/ε) rate, our
lemmas also include a push-back term involving the last iteration solution. This term ensures when
the SGD solution from Algorithm 2 is used in the outer-level ADMM dynamics, the accumulated
error of our final solution does not explode. It also explains why we use y

(t−1)
i , which is the last

iteration solution from the SGD sub-procedure, rather than conventional x(t−1)
i to define φ(t)

i (xi).

Lemma 1 ([16]). Assume φ(z) is a µ-convex function (µ > 0) over set Z and there exists a constant
B such that the unbiased subgradient ζ(k) used in Algorithm 2 satisfies E[‖ζ(k)‖2] ≤ B2,∀k ∈
{1, 2, . . . ,K}. If we take k0 = 1 in Algorithm 2, then for all z ∈ Z , we have

E[φ(ẑ)] ≤ φ(z)− µ

2
E[‖z(K) − z‖2]︸ ︷︷ ︸

(7)-term (I)

+
2B2

µ(K + 1)
, (7)

where ẑ = 1∑K−1
k=0 (k+k0)

∑K−1
k=0 (k + k0)z(k).

4

Remark 1. It is firstly shown in [16] that Algorithm 2 with k0 = 1 (vanilla SGD with a particular
averaging scheme) has O(1/ε) convergence for non-smooth strongly convex problems. Note that (7)
holds for all z ∈ Z (not necessarily the minimizer of φ(·)). The push-back term (7)-term (I) is often
ignored in convergence rate analysis for SGD but is important for our analysis of Algorithm 1.

Recall that a function h(x) is said to be L-smooth if its gradient ∇h(x) is Lipschitz with modulus
L. The next lemma is new and extends Lemma 1 to smooth minimization such that the error term
depends only on the variance of stochastic gradients (using a different averaging scheme).
Lemma 2. Assume φ(z) is a L-smooth and µ-convex function (µ > 0) with conditional number
κ = L

µ and there exists σ > 0 such that unbiased gradient ζ(k) (at point z(k−1)) in Algorithm 2

satisfies E[‖ζ(k) −∇φ(z(k−1))‖2] ≤ σ2,∀k ∈ {1, 2, . . . ,K}. If we take integer k0 > 2κ, then for
any z ∈ Z , we have

E[φ(ẑ)] ≤φ(z) +
µ(k20 − k0)

2K(K + 2k0 − 1)

(
E[‖z− z

(0)‖2]− E[‖z− z
(K)‖2]

)
−
µ

2
E[‖z− z

(K)‖2] +
2k0σ

2

(K + 2k0 − 1)µ
(8)

where ẑ = 1∑K
k=1(k+k0−1)

∑K
k=1(k + k0 − 1)z(k).

Proof. See Supplement 6.6.

3 Performance Analysis of Algorithm 1
This section shows that Algorithm 1 can achieve an ε-accuracy solution using O(1/ε2) computation
rounds and O(1/ε) communication rounds for general convex stochastic programs; or using Õ(1/ε)

computation rounds and Õ(1/
√
ε) communication rounds for strongly convex stochastic programs.

3.1 General objective functions (possibly non-smooth non-strongly convex)
Theorem 1. Consider convex program (1) under Assumption 1. Let (x∗,λ∗) be any saddle point
defined in Assumption 1. Assume that
• The constraint set X is bounded, i.e., there exists constant R > 0 such that ‖x‖ ≤ R,∀x ∈ X .

• The function f(x) has unbiased stochastic subgradients with a bounded second order moment, i.e.,
there exists constant D > 0 such that Eξ[‖G(x; ξ)‖2] ≤ D2,∀x ∈ X .

For all T ≥ 1, if we choose any fixed ρ(t) = ρ > 0, ν(t) = ν ≥ 8ρ‖A‖2, K(t) = K ≥ T in
Algorithm 1 and the sub-procedure STO-LOCAL (Algorithm 2) uses ẑ defined in Lemma 1 as the
output, then

E[f(x(T))] ≤ f(x∗) +
ν

2T
‖x∗ − y(0)‖2 +

C

2νT
(9)

E[‖Ax(T) − b‖] ≤ 1

T

√
Q

ρ
(10)

where x(T) = 1
t

∑T
t=1 x

(t); Q = (2‖λ∗‖ +

√
ρν‖x∗ − y(0)‖2 + 24ρD2

ν
+

24(ρ)3‖A‖2(‖A‖R+‖b‖)2
ν

+ 96νρR2/
(
1−√

8ρ‖A‖2
ν

))2 is an absolute constant (irrelevant to T); andC ∆
= 4‖A‖2Q+12D2+12ρ2‖A‖2(‖A‖R+

‖b‖)2 + 48ν2R2 is also an absolute constant.

Proof. See Supplement 6.7.
Remark 2. After T outer-level rounds, Algorithm 1 yields a solution with error O(1/T). Note that
the number of communication rounds is equal to the number of outer-level rounds and the number
of computation rounds is

∑T
t=1K

(t) = O(T 2) when K(t) = T, ∀t. Thus, to obtain an ε-solution,
Algorithm 1 uses O(1/ε) communication rounds and O(1/ε2) computation rounds.
Remark 3. If we choose ν(t) = ν = 8ρ‖A‖2 in Theorem 1 and further analyze the dependence on
‖A‖ in (9)-(10), we have E[f(x(T))] ≤ f(x∗) + O(1

T ρ‖A‖
2) and E[‖Ax(T) − b‖] ≤ O(1

T (1
ρ +

‖A‖)). If ‖A‖ is large, to balance the dependence on ‖A‖ in (9)-(10), we shall choose ρ = 1
‖A‖ such

that the error terms in both (9) and (10) are order O(1
T ‖A‖). In general, ρ can be controlled to trade

off between objective error and constraint error. For distributed consensus optimization considered in
[26, 22, 23, 19] (assuming di = 1 without loss of generality), we can choose any A,b that suffices to
ensure the consistence of local solutions, e.g., Null{A} =Span{1} and b = 0. Our method does not
necessarily require A = I−W with a stochastic matrix W encoding the network topology as some
methods in [26, 22, 23, 19]. Nevertheless, even when ung A = I−W, our communication overhead
can possibly have a better dependence on W. Note that a stochastic matrix W ensures ‖A‖ ≤ 2.
The convergence in [26, 22, 23, 19] (using a doubly stochastic or symmetric PSD W for mixing)
further depends on 1/(1−max{|λ2(W)|, |λN (W)|}) or the eigen-gap λ1(W)/λN−1(W), which
can be much larger than constant 2 when some eigenvalues are extreme.

5

3.2 Smooth objective functions

For unconstrained stochastic smooth minimization, the constant factor in the SGD convergence
rate is determined by the variance that can be significantly less than the second order moment for
non-smooth stochastic minimization[20]. Such a property enable us to speed up SGD by averaging
multiple i.i.d. stochastic gradients, e.g., mini-batch SGD. In this subsection, we show that Algorithm
1 has a similar property when f(·) in problem (1) is smooth.
Theorem 2. Consider convex program (1) with µ-convex (possibly µ = 0) objective function under
Assumption 1. Let (x∗,λ∗) be any saddle point defined in Assumption 1. Assume that
• The function f(x) is L-smooth.
• The function f(x) has unbiased stochastic gradients with a bounded variance, i.e., there exists

constant σ > 0 such that Eξ[‖G(x; ξ)−∇f(x)‖2] ≤ σ2,∀x ∈ X .
If the sub-procedure STO-LOCAL (Algorithm 2) uses ẑ defined in Lemma 2 as the output, then
Algorithm 1 ensures:

• General Convex (µ = 0): For all T ≥ 1, if we choose any fixed ρ(t) = ρ > 0, ν(t) = ν ≥ ρ‖A‖2,
K(t) = K = T and positive integer k0 ≥ 2L+ν

ν , then we have

E[f(x
(T)

)] ≤ f(x
∗
) +

1

T

ν(k0 + 1)

4
‖x∗ − y

(0)‖2 +
1

T

2k0σ
2

ν
(11)

E[‖Ax
(T) − b‖] ≤

1

T

(2

ρ
‖λ∗‖+

√
ν(k0 + 1)

2ρ
‖x∗ − y

(0)‖+ 2

√
k0σ2

ρν

)
(12)

where x(T) = 1
t

∑T
t=1 x

(t) .

• Strongly Convex (µ > 0): For all T ≥ 1, if we choose ρ ≤ µ
3‖A‖2 , ρ

(t) = tρ, ν(t) = tρ‖A‖2,

positive integer k0 ≥ 2(1 + L
µ) and K(t) = (2k0 − 1)t, then we have

E[f(x
(T)

)] ≤ f(x
∗
) +

1

T (T + 1)

(
c1‖x∗ − y

(0)‖2 +
c2

ρ
log(T + 1)

)
(13)

E[‖Ax
(T) − b‖] ≤

2

T (T + 1)

(4‖λ∗‖
ρ

+

√
c1
√
ρ
‖x∗ − y

(0)‖+

√
c2 log(T + 1)

ρ

)
(14)

where x(T) = 1∑T
t=1 ρ

(t)

∑T
t=1 ρ

(t)x(t); and c1
∆
= ρ‖A‖2 +

(ρ‖A‖2+µ)(k20−k0)
2(2k0−1)2 and c2

∆
=

4k0σ
2

(2k0−1)‖A‖2 are two constants.
Proof. See Supplement 6.8.
Remark 4. If f(x) in convex program (1) is strongly convex, Algorithm 1 can obtain a solution
with error O(log(T)

T 2) after T outer-level rounds. Recall the number of communication rounds
is equal to the number of outer-level rounds and the number of computation rounds is equal to∑T
t=1K

(t) = 2k0−1
2 T (T + 1) = O(T 2), Algorithm 1 requires Õ(1

ε) communication rounds and
Õ(1

ε2) computation rounds to obtain an ε-solution.

3.3 Non-smooth strongly convex objective functions

There is a fourth case, where the stochastic objective function f(x) is strongly convex but possibly
non-smooth, uncovered in the previous subsections. In this case, we assume the following condition
(originally introduced in [17]): There exists constant M > 0 such that

f(x) ≤ f(y) + 〈d,x− y〉+M‖x− y‖, (15)

for all x,y ∈ X and d ∈ ∂f(y). This condition is assumed throughout [17] to develop a different
communication efficient primal-dual method. Supplement 6.9 shows this condition is almost as
useful as smoothness and under this condition, our communication efficient ADMM can achieve
an ε-accuracy solution with Õ(1/ε) computation rounds and Õ(1/

√
ε) communication rounds for

non-smooth strongly convex stochastic optimization.

4 Experiments
4.1 Distributed Stochastic Optimization with Noisy Stochastic Gradient Information

Consider simple stochastic optimization given by

6

min

3∑
i=1

Eci [‖xi − ci‖22] (16)

s.t. x1 = x2,x2 = x3 (17)

xi ∈ [−1, 1]3,∀i ∈ {1, 2, . . . , 3} (18)

where ci ∼ N (c̄i, σ
2
i I) satisfy normal distributions with c̄1 = [−2.0871,−0.3702, 0.2302]T, σ1 =

0.1, c̄2 = [−0.5556,−0.4413, 0.2869]T, σ2 = 0.2, c̄3 = [−1.4991,−1.8286,−2.0477]T and σ3 =
0.1. Solving this problem with Algorithm 1 only requires each node to access samples of local ci and
does not use the true value c̄i and σi,which are fundamentally unavailable. However, by assuming the
knowledge of c̄i and σi, we can convert this stochastic optimization to a deterministic problem and
use CVXPY [9] to obtain the unique solution x∗1 = x∗2 = x∗3 = [−1,−0.88003599,−0.51020207]T

such that we can evaluate the performance of Algorithm 1. Since the objective function is smooth and
strongly convex, by Theorem 2, using time-varying parameters in Algorithm 1 has faster convergence.
We run Algorithm 1 with constant ρ, ν according to3 Theorem 1 and with time-varying ρ(t), ν(t)

according to Theorem 2, respectively. Note that if an algorithm has O(1/εβ) convergence, then its
error should decay like O(1/t1/β) where t is the iteration index.

Figures 1 plots the distance to x∗ versus the computation round index or the communication round
index in a log-log scale. It also plots baseline curves 1/t

1
β corresponding to O(1/εβ) convergence

proven in the theorems. Note that in a log-log scale, curves 1/t
1
β become straight lines with

slopes − 1
β . That is, if our algorithm has the proven convergence rate, the error curves should be

eventually parallel to corresponding baseline for large t. In Figures 1, we observe the numerical
result is consistent with our theoretical rate proven in our theorems. This simple experiment verifies
the correctness of our theorems. Our multi-core implementation of Algorithm 1 uses Python 3.7
and MPI4PY. In an experiment over a machine with a multi-core Intel Xeon Processor E5-2682
2.5GHz. Each computation round takes 0.3ms and each communication round takes 43.7ms. Note
communication becomes more relatively expensive as more parallel nodes/cores are involved.

(a) (b)

(c) (d)

Figure 1: Performance of Algorithm 1 to solve stochastic optimization (16)-(18): (a)& (b) conver-
gence w.r.t. # of computation rounds; (c)&(d) convergence w.r.t. # of communication rounds.

3Since f(x) is also smooth, using constant ρ, ν according to Theorem 2 can give a similar (slightly better)
performance. Theoretically, by using K(t) = t rather than K(t) = T for a fixed T , the rate is slightly worse, i.e.
O(log(T)/T) v.s. O(1/T). However, we find the performance degradation for large T regions is negligible
when using K(t) = t. In contrast, using K(t) = t enable the algorithm converge faster for small t. We use
K(t) = t when performing the numerical experiments in this paper.

7

4.2 Distributed l1 Regularized Logistic Regression

Consider a distributed l1 regularized logistic regression problem (over 10 nodes) given by:

min
1

10

10∑
i=1

1

Ni

Ni∑
j=1

log(1 + exp(bij(a
T
ijxi)) + µ‖xi‖1 (19)

with each optimization variable xi ∈ Rd. Each node contains Ni training pairs (aij , bij), where
aij ∈ Rd is a feature vector and bij ∈ {−1, 1} is the corresponding label. To ensure all nodes yield a
consistent model, consensus constraints are needed to enforce all xi are equal. Note that conventional
two-block ADMMs must introduce a dummy block (server node) z and add constraints xi = z. (See
e.g., [4, 21, 25].) However, such an ADMM method requires all nodes to pass the updated xi value
to the (server) node corresponding to the z block and hence can turn z node into a communication
bottleneck in large networks. In contrast, using a multi-block ADMM method allows arbitrary
linear constraints, e.g., constraints xi = xi+1,∀i that ensure all xi are equal, and the corresponding
multi-block ADMM only uses communication between adjacent blocks. Alternatively, consider a line
network where only one-hop transmission is allowed, then our ADMM naturally yields a protocol
that is faithful to the network communication restriction. In general, given an arbitrary network
communication topology, our multi-block ADMM can always yield an implementable distributed
protocol by adding constraints xi = xj for links (i, j) existing in the network.

We generate a problem instance in a way similarly to [4]. Our problem instance uses d = 100,
Ni = 105 for all i and µ = 0.002. Each feature vector aij is generated from a standard normal
distribution. We choose a true weight vector xtrue ∈ Rd with 10 non-zero entries from a standard
normal distribution and then generate the label bij = sign(aTijx

true + ni) where noise ni ∼ N (0, σ2
i)

with fixed constants σi randomly generated from a uniform distribution Unif[0, 1]. Figures 2 compares
Algorithm 1 with RPDBUS ADMM proposed in [11], where the number of communication rounds is
the same that of computation rounds, and DCS in [17], where the number of communication rounds
is the square root of that of computation rounds. We observe that Algorithm 1 has fastest convergence
with respect to both computation and communication.

(a) (b)

(c) (d)

Figure 2: Distributed l1 regularized logistic regression: (a)& (b) performance w.r.t. # of computation
rounds; (c)&(d) performance w.r.t. # of communication rounds

5 Conclusions
This paper proposes a new communication efficient multi-block ADMM for linearly constrained
stochastic optimization. This method is as fast as (or faster than) existing stochastic ADMMs but the
associated communication overhead is only the square root of that required by existing ADMMs.

8

References
[1] Samaneh Azadi and Suvrit Sra. Towards an optimal stochastic alternating direction method of

multipliers. In International Conference on Machine Learning (ICML), pages 620–628, 2014.

[2] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

[3] Dimitri P. Bertsekas, Angelia Nedić, and Asuman E. Ozdaglar. Convex Analysis and Optimiza-
tion. Athena Scientific, 2003.

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

[5] Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, and Xiangfeng Wang. Asynchronous
distributed admm for large-scale optimization—part i: Algorithm and convergence analysis.
IEEE Transactions on Signal Processing, 64(12):3118–3130, 2016.

[6] Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. The direct extension of ADMM
for multi-block convex minimization problems is not necessarily convergent. Mathematical
Programming, 155:57–79, 2016.

[7] Wei Deng, Ming-Jun Lai, Zhimin Peng, and Wotao Yin. Parallel multi-block ADMM with
o(1/k) convergence. Journal of Scientific Computing, 71(2):712–736, 2017.

[8] Wei Deng and Wotao Yin. On the global and linear convergence of the generalized alternating
direction method of multipliers. Journal of Scientific Computing, 66(3):889–916, 2016.

[9] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[10] Jonathan Eckstein and Dimitri P Bertsekas. On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators. Mathematical Programming,
55(1-3):293–318, 1992.

[11] Xiang Gao, Yangyang Xu, and Shuzhong Zhang. Randomized primal-dual proximal block
coordinate updates. arXiv:1605.05969, 2016.

[12] Bingsheng He, Hong-Kun Xu, and Xiaoming Yuan. On the proximal Jacobian decomposition
of ALM for multiple-block separable convex minimization problems and its relationship to
ADMM. Journal of Scientific Computing, 66(3):1204–1217, 2016.

[13] Bingsheng He and Xiaoming Yuan. On the O(1/n) convergence rate of the Douglas-Rachford
alternating direction method. SIAM Journal on Numerical Analysis, 50(2):700–709, 2012.

[14] Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas
Hofmann, and Michael I Jordan. Communication-efficient distributed dual coordinate ascent.
Advances in Neural Information Processing Systems (NIPS), 2014.

[15] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated opti-
mization: Distributed machine learning for on-device intelligence. arXiv:1610.02527, 2016.

[16] Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining an
O(1/t) convergence rate for the projected stochastic subgradient method. arXiv:1212.2002,
2012.

[17] Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for decentralized
and stochastic optimization. arXiv:1701.03961, 2017.

[18] Huan Li, Cong Fang, and Zhouchen Lin. Convergence rates analysis of the quadratic penalty
method and its applications to decentralized distributed optimization. arXiv:1711.10802, 2017.

[19] Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 106(5):953–976,
2018.

9

[20] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

[21] Hua Ouyang, Niao He, Long Tran, and Alexander Gray. Stochastic alternating direction method
of multipliers. In International Conference on Machine Learning (ICML), 2013.

[22] Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. arXiv:1805.11454,
2018.

[23] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Opti-
mal algorithms for non-smooth distributed optimization in networks. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[24] Virginia Smith, Simone Forte, Chenxin Ma, Martin Takác, Michael I Jordan, and Martin
Jaggi. CoCoA: A general framework for communication-efficient distributed optimization.
arXiv:1611.02189, 2016.

[25] Taiji Suzuki. Dual averaging and proximal gradient descent for online alternating direction
multiplier method. In International Conference on Machine Learning (ICML), 2013.

[26] César A Uribe, Soomin Lee, Alexander Gasnikov, and Angelia Nedić. Optimal algorithms for
distributed optimization. ArXiv:1712.00232, 2017.

[27] Huahua Wang, Arindam Banerjee, and Zhi-Quan Luo. Parallel direction method of multipliers.
Advances in Neural Information Processing Systems (NIPS), 2014.

[28] Ermin Wei and Asuman Ozdaglar. Distributed alternating direction method of multipliers. In
IEEE Conference on Decision and Control (CDC), pages 5445–5450, 2012.

[29] Tianbao Yang. Trading computation for communication: Distributed stochastic dual coordinate
ascent. Advances in Neural Information Processing Systems (NIPS), 2013.

[30] Hao Yu and Michael J. Neely. A simple parallel algorithm with an O(1/t) convergence rate for
general convex programs. SIAM Journal on Optimization, 27(2):759–783, 2017.

[31] Wenliang Zhong and James Kwok. Fast stochastic alternating direction method of multipliers.
In International Conference on Machine Learning (ICML), pages 46–54, 2014.

10

6 Supplement

6.1 Connection between Algorithm 1 and Existing ADMMs

Note that Algorithm 1 uses the same Lagrange multiplier update as most existing ADMM methods.
The Lagrange multiplier update (4) is helpful to enforce the linear constraint. (See Lemma 3
in Supplement 6.3 for a more technical justification.) However, the per-iteration x

(t)
i updates in

Algorithm 1 introduce new stochastic functions φ(t)
i (xi) and let each node call a SGD sub-procedure

locally to minimize φ(t)
i (xi). This is quite different from existing deterministic ADMMs [4, 7],

which require to solve an “argmin" problem exactly, or existing stochastic ADMMs [21, 25, 11],
which perform a single gradient descent step. The “argmin" update is fundamentally impossible for
stochastic minimization since the stochastic objective function is fundamentally unknown and can
only be sampled. Our intuition is existing stochastic ADMMs are too conservative in updating xi
by restricting themselves to a single gradient descent update and then communicate immediately
for the Lagrange multiplier update. In contrast, our Algorithm 1 introduces the SGD sub-procedure
(Algorithm 2) for each node to update xi usingK(t) gradient descent steps. Such SGD sub-procedures
only involve local computations and do not incur any inter-node communication. This is the key
reason why our Algorithm 1 requires fewer communication rounds than computation rounds. It
is tempting to interpret Algorithm 1 as an ADMM variant where the “argmin" primal update is
only approximately solved using local SGD sub-procedures. Previous work [10] considers ADMM
variants with inexact “argmin" primal updates for deterministic optimization without analyzing the
convergence rate. However, our Algorithm 1 is different from the method in [10] and can solve more
challenging stochastic optimization with convergence rate guarantees.

It remains to see how we come up with φ(t)
i (xi) in (2). To see so, we introduce Algorithm 3 that

generalizes the deterministic multi-block ADMM in [7] and provide new insight and analysis.

Algorithm 3 Deterministic Multi-Block Proximal Jacobi ADMM (generalized from [7])

1: Input: Algorithm parameters: {P(t)
i }t≥1,i∈{1,2,...,N} with P

(t)
i � 0,∀i,∀t; {ρ(t)}t≥1.

2: Initialize arbitrary x
(0)
i ∈ Xi,∀i, λ

(0) = 0 and t = 1.
3: while t ≤ T do
4: Update each x

(t)
i in parallel equal to

argmin
xi∈Xi

{
fi(xi) +

ρ(t)

2
‖Aixi +

∑
j 6=i

Ajx
(t−1)
j − b +

1

ρ(t)
λ(t−1)‖2 +

1

2
‖xi − x

(t−1)
i ‖2

P
(t)
i

}
. (20)

5: Update λ(t) according to (4).
6: Update t← t+ 1.
7: end while
8: Output: x(T) = 1∑T

t=1 ρ
(t)

∑T
t=1 ρ

(t)x(t)

Algorithm 3 is almost identical to the original parallel multi-block ADMM proposed in [12, 7] except
that it allows P(t)

i and ρ(t) to be time-varying. We will show later that time-varying P
(t)
i and ρ(t) are

useful for Algorithm 3 to achieve faster O(1/
√
ε) convergence for problems with strongly convex

objective functions. Note that if we take P
(t)
i = ν(t)I− ρ(t)AT

iAi with scalar ν(t) > 0, then (20) in
Algorithm 3 is equivalent to

x
(t)
i =argmin

xi∈Xi

{
fi(xi) + ρ(t)〈AT

i

(N∑
i=1

Aix
(t−1)
i − b +

1

ρ(t)
λ(t−1)

)
,xi
〉

+
ν(t)

2
‖xi − x

(t−1)
i ‖2

}
(21)

=argmin
xi∈Xi

{
fi(xi) + ρ(t)〈 N∑

i=1

Aix
(t−1)
i − b +

1

ρ(t)
λ(t−1),Aixi −

b

N

〉
+
ν(t)

2
‖xi − x

(t−1)
i ‖2

}
(22)

Since both 〈c,xi〉 and ‖xi − x
(t−1)
i ‖2 are separable (with respect to each component of vector

xi), the equivalent minimization step (21) or (22) can be further decomposed into di simple scalar

11

minimization subproblems if fi(xi) is also separable, e.g. linear fi(xi) or fi(xi) = ‖xi‖1. Thus,
suitable choices of P(t)

i can remarkably reduce the implementation complexity of Algorithm 3 and
enable the parallelism of x(t)

i updates for different i. See [8, 7] for more discussions on the benefit of
introducing P

(t)
i .

Note r(t−1) =
∑N
i=1 Aiy

(t−1)
i −b in Algorithm 1, it now becomes transparent how φ

(t)
i (xi) in (2) is

developed in Algorithm 1. Each φ(t)
i (xi) is obtained by replacing each x

(t−1)
i in expression (22) with

a newly introduced variable y
(t−1)
i . Algorithm 1 then further call a SGD sub-procedure (Algorithm

2) to minimize φ(t)
i (xi). The introduction of y(t−1)

i is to compensate the error accumulated in the
SGD sub-procedures and is further justified in Section 2.1.

To further motivate the development of Algorithm 1 from Algorithm 3, the next theorem summarizes
the convergence of Algorithm 3 for deterministic convex programs:
Theorem 3. Consider convex programs in the form of (1) with µ-convex (possibly non-smooth)
deterministic f(x). Let (x∗,λ∗) be a saddle point in Assumption 1.
1. General Convex (µ = 0): If we choose any fixed ρ(t) = ρ > 0 and P

(t)
i = Pi = νI− ρAT

iAi

with ν ≥ ρ‖A‖2 in Algorithm 3, then we have

f(x(T)) ≤ f(x∗) +
1

2T
‖x∗ − x(0)‖2Q (23)

‖Ax(T) − b‖ ≤ 1

T

2‖λ∗‖
ρ

+
1

T

‖x∗ − x(0)‖Q√
ρ

(24)

where x(T) = 1∑T
t=1 ρ

∑T
t=1 ρx

(t) = 1
T

∑T
t=1 x

(t); Q = Diag(Q1, . . . ,QN) = Diag(P1 +

ρAT
1A1, . . . ,PN + ρAT

NAN).

2. Strongly Convex (µ > 0): If we choose ρ ≤ µ
3‖A‖2 , ρ(t) = tρ and P

(t)
i = tρ‖A‖2I− tρAT

iAi

in Algorithm 3, then we have

f(x(T)) ≤ f(x∗) +
ρ

T (T + 1)
‖A‖2‖x∗ − x(0)‖2 (25)

‖Ax(T) − b‖ ≤ 4‖λ∗‖
ρT (T + 1)

+
2‖A‖‖x∗ − x(0)‖

T (T + 1)
(26)

Proof. See Supplement 6.5.

Remark 5. It is sufficient to use any constant ρ to ensure O(1/T) convergence for the µ = 0 case.
However, a larger ρ yields larger objective error (note that ‖ · ‖2Q = O(ρ)) and smaller constraint
error. Thus, ρ can be controlled to trade off between objective error and constraint error. Similar
tradeoffs also hold for the µ > 0 case (as long as ρ satisfies the condition ensuring the algorithm
convergence) and other algorithms in this paper.
Remark 6. For the µ = 0 case, Algorithm 3 with fixed algorithm parameters degrades to the
proximal Jacobi ADMM considered in [7]). However, the convergence rate shown in [7] is in the
weak form of ‖x(t+1) − x(t)‖2 ≤ o(1/t) and does not necessarily mean4 the convergence for the
objective value or feasibility shown in Theorem 3. In contrast, our Theorem 3 proves the O(1/T)
convergence rate of Algorithm 3 regarding the objective value and feasibility, which is the concern
for math optimization.

A similar O(1/T) convergence rate, or equivalently, O(1/ε) convergence time, for µ = 0 case is
independently shown in [11] for an ADMM variant different from Algorithm 3. In Supplement
6.5, we provide a different analysis that unifies both µ = 0 and µ > 0 cases. To our knowledge,
the O(1/T 2) convergence rate of Algorithm 3 with time-varying parameters for µ > 0 case (with
possibly non-smooth f(x) and arbitrary matrix A) is new. Existing faster convergence of ADMM
for strongly convex programs requires additional conditions of f(x) and/or A.

4In fact, the ‖x(t+1) − x(t)‖2 ≤ o(1/t) convergence is so weak that it does not even imply xt converges to
a fixed x∗. For example, the scalar sequence x(t) = t1/4 satisfies ‖x(t+1) − x(t)‖2 ≤ o(1/t) but diverges to
∞.

12

6.2 Analysis Technique in This Paper

Note that our analysis technique for the proximal Jacobi ADMM described in Algorithm 3 and
the communication efficient stochastic ADMM in Algorithm 1 is different from the analysis for
conventional Jacobi type ADMM as in [7]. The analysis in this paper is extended from [30] where
a proximal Lagrangian based method is developed for convex programs with possibly non-linear
constraints. By utilizing the simpler linear constraint structure, we obtain finer convergence rate
results for Algorithm 3 and further establish the computation and communication complexity for
Algorithm 1.

6.3 Basic Facts from Lagrange Multiplier Updates

In this section, we present two lemmas that hold for any algorithm using (4) to update λ. These two
lemmas are frequently used to analyze the feasibility violations in this paper.

Lemma 3. Let λ(0) = 0 and λ(t), t ≥ 1 be updated according to (4).

1. For any T ≥ 1, we have
∑T
t=1 ρ

(t)
(
Ax(t) − b

)
= λ(T)

2. For all t ≥ 1, we have
〈
λ(t−1),Ax(t) − b

〉
= 1

2ρ(t)

(
‖λ(t)‖2 − ‖λ(t−1)‖2

)
− ρ(t)

2 ‖Ax(t) −
b‖2.

Proof.

1. This follows directly from the update equation (4).

2. Fix t ≥ 1. Taking the squared vector l2 norm on both sides of (4) yields

‖λ(t)‖2 = ‖λ(t−1)‖2 + (ρ(t))2‖
N∑
i=1

Aix
(t)
i − b‖2 + 2ρ(t)

〈
λ(t−1),Ax(t) − b

〉
.

This part follows by dividing by 2ρ(t) on both sides and rearranging terms.

Note that part (1) of lemma implies that to analyze the accumulated feasibility violations over T
iterations, it is sufficient to analyze the boundedness of λ(T). The next lemma follows directly
from the saddle point assumption (Assumption 1) and relates λT with the accumulated objective
performance.
Lemma 4. Consider convex program (1) under Assumption 1 such that (x∗,λ∗) is any saddle point
defined in Assumption 1. For any T ≥ 1, if an algorithm generates x(t) ∈ X and updates λ(t)

according to (4)(with λ(0) = 0) at each iteration t ∈ {1, 2, . . . , T}, then we have
T∑
t=1

ρ(t)f(x(t)) ≥
T∑
t=1

ρ(t)f(x∗)− ‖λ∗‖‖λ(T)‖

Proof. Fix T > 0. For any t ∈ {1, . . . , T}, by Assumption 1, we have

f(x∗) = q(λ∗)
∆
= inf

x∈X
{f(x) + 〈λ∗,Ax− b〉}

(a)

≤ f(x(t)) +
〈
λ∗,Ax(t) − b

〉
where (a) trivially follows because x(t) ∈ X . Multiplying ρ(t) on both sides and summing over
t ∈ {1, 2, . . . , T} yields

T∑
t=1

ρ(t)f(x∗) ≤
T∑
t=1

ρ(t)f(x(t)) +

〈
λ∗,

T∑
t=1

ρ(t)(Ax(t) − b)

〉
(a)
=

T∑
t=1

ρ(t)f(x(t)) + 〈λ∗,λ(T)〉

13

(b)

≤
T∑
t=1

ρ(t)f(x(t)) + ‖λ∗‖‖λ(T)‖

where (a) follows from part (1) of Lemma 3 and (b) follows from the Cauchy-Schwarz inequality.

6.4 New Facts on Convex Analysis

Recall the following important fact on the minimizer of strongly convex functions:
Lemma 5 (See e.g. Corollary 1 in [30]). Let h : X → R be a strongly convex function, i.e., µ-convex
with µ > 0, and xmin ∈ X be a point that minimizes h over set X , then

h(xmin) ≤ h(x)− µ

2
‖x− xmin‖2 ∀x ∈ X .

Note that this fact holds trivially for convex functions without strong convexity (µ-convex functions
with µ = 0). We now extend the above property for a convex function given by h(x) = g(x)+ 1

2‖x‖
2
Q

where g(x) is a µ-convex function and Q � 0 is a symmetric semidefinite positive matrix, in the
following lemma:
Lemma 6. Let h : X → R be defined as h(x) = g(x) + 1

2‖x‖
2
Q where g(x) is a µ-convex function

and Q � 0 is a symmetric semidefinite positive matrix. If xmin ∈ X is a point that minimizes h over
set X , then

h(xmin) ≤ h(x)− 1

2
‖x− xmin‖2Q+µI ∀x ∈ X .

Since matrix Q can be rank deficient, the function 1
2‖x‖

2
Q is not necessarily strongly convex.

Thus, h(x) = g(x) + 1
2‖x‖

2
Q is in general µ-convex. By Lemma 5, we can only say h(xmin) ≤

h(x)− 1
2‖x− xmin‖2µI for all x ∈ X , which is weaker than the inequality in Lemma 6.

The following lemma will be useful to prove Lemma 6
Lemma 7. Let h : X → R be defined as h(x) = g(x) + 1

2‖x‖
2
Q where g(x) is a µ-convex function

and Q � 0 is a symmetric semidefinite positive matrix. Let ∂h(x) be the set of all subgradients of h
at point x. Then

h(y) ≥ h(x) + 〈d,y − x〉+
1

2
‖y − x‖2Q+µI

for all x,y ∈ X and all d ∈ ∂h(x).

Proof. Define φ(x) = h(x)− µ
2 ‖x‖

2− 1
2‖x‖

2
Q = h(x)− 1

2‖x‖
2
Q+µI. Since h(x) = g(x)+ 1

2‖x‖
2
Q,

we known φ(x) is a convex function. Let ∂φ(x) denote the set of all subgradients of φ at point x,
then ∂φ(x) = ∂h(x) − (Q + µI)x = {d − (Q + µI)x | d ∈ ∂h(x)}. By convexity of φ, for all
d ∈ ∂h(x) and all x,y ∈ X , we have

φ(y) ≥φ(x) + 〈d− (Q + µI)x,y − x〉
=φ(x) + ‖x‖2Q+µI + 〈d,y − x〉 − 〈(Q + µI)x,y〉

Substituting φ(x) = h(x)− 1
2‖x‖

2
Q+µI and φ(y) = h(y)− 1

2‖y‖
2
Q+µI into it and rearranging terms

(noting that Q + µI is symmetric) yields

h(y) ≥ h(x) + 〈d,y − x〉+
1

2
‖y − x‖2Q+µI

Now we are ready to prove Lemma 6:

Proof of Lemma 6: Fix x ∈ X . Note that h is also convex. By the first order optimality condition
of convex functions, e.g., Proposition B.24 (f) in [2], there exists d ∈ ∂h(xmin) such that 〈d,x−
xmin〉 ≥ 0. By Lemma 7, we also have

h(x) ≥ h(xmin) + 〈d,x− xmin〉+
1

2
‖x− xmin‖2Q+µI

(a)

≥ h(xmin) +
1

2
‖x− xmin‖2Q+µI,

where (a) follows from the fact that 〈d,x− xmin〉 ≥ 0.

14

Corollary 1. Let c be a fixed constant vector and h(x) = g(x) + 1
2‖x − c‖2Q where g(x) is a

µ-convex function and Q � 0 is a symmetric semidefinite positive matrix. If xmin ∈ X be a point
that minimizes h over set X , then

h(xmin) ≤ h(x)− 1

2
‖x− xmin‖2Q+µI ∀x ∈ X .

Proof. Let g̃(x) = g(x)+ 1
2‖c‖

2
Q + 〈c,x〉. Note that g̃(x) is µ-convex as long as g(x) is. We further

note that h(x) = g̃(x) + 1
2‖x‖

2
Q, which is a summation of µ-convex function and 1

2‖x‖
2
Q. Thus, this

corollary follows directly from Lemma 6.

6.5 Proof of Theorem 3

The proof is built upon Corollary 1 from Section 6.4 and a different interpretation of the x(t) update
in Algorithm 3.
Lemma 8. The update in (20) (Algorithm 3) is equivalent to

x
(t)
i = argmin

xi∈Xi

{
fi(xi) + ρ(t)

〈
N∑
i=1

Aix
(t−1)
i − b +

1

ρ(t)
λ(t−1),Aixi −

b

N

〉
+

1

2
‖xi − x

(t−1)
i ‖2

Q
(t)
i

}
,

(27)

∀i ∈ {1, 2, . . . , N} with Q
(t)
i = P

(t)
i + ρ(t)AT

iAi � 0.

Proof. Note that λ(t−1) and x
(t−1)
i are given constants in (27). This lemma follows by noting that

(27) is equivalent to

argmin
xi∈Xi

{
fi(xi) + ρ(t)

〈
N∑
i=1

Aix
(t−1)
i − b +

1

ρ(t)
λ(t−1),Aixi −

b

N

〉
+
ρ(t)

2
‖Ai(xi − x

(t−1)
i)‖2

+
1

2
‖xi − x

(t−1)
i ‖2

P
(t)
i

}
(a)⇔argmin

xi∈Xi

{
fi(xi) + ρ(t)

〈
N∑
i=1

Aix
(t−1)
i − b +

1

ρ(t)
λ(t−1),Ai(xi − x

(t−1)
i)

〉
+
ρ(t)

2
‖Ai(xi − x

(t−1)
i)‖2

+
1

2
‖xi − x

(t−1)
i ‖2

P
(t)
i

}
(b)⇔argmin

xi∈Xi

fi(xi) +
ρ(t)

2

∥∥∥∥∥Ai(xi − x
(t−1)
i) +

N∑
i=1

Aix
(t−1)
i − b +

1

ρ(t)
λ(t−1)

∥∥∥∥∥
2

+
1

2
‖xi − x

(t−1)
i ‖2

P
(t)
i

⇔argmin

xi∈Xi

fi(xi) +
ρ(t)

2

∥∥∥∥∥∥Aixi +
∑
j 6=i

Ajx
(t−1)
j − b +

1

ρ(t)
λ(t−1)

∥∥∥∥∥∥
2

+
1

2
‖xi − x

(t−1)
i ‖2

P
(t)
i

where (a) follows because an argmin solution does not change if we add constant terms to the
expression to minimize and (b) follows by completing the square (and adding necessary constant
terms for this).

Corollary 2. The update in (20) (Algorithm 3) is equivalent to

x(t) = argmin
x∈X

{
f(x) + ρ(t)

〈
Ax(t−1) − b +

1

ρ(t)
λ(t−1),Ax− b

〉
+

1

2
‖x− x(t−1)‖2Q(t)

}
,

(28)

with

Q(t) ∆
= Diag(Q

(t)
1 , . . . ,Q

(t)
N) = Diag(P

(t)
1 + ρ(t)AT

1A1, . . . ,P
(t)
N + ρ(t)AT

NAN) (29)

15

Proof. Note that the update of each x
(t)
i is fully decoupled in (27). That is, x(t) chosen by Algorithm

3 is to jointly minimize
N∑
i=1

[
fi(xi) + ρ(t)

〈
N∑
i=1

Aix
(t−1)
i − b +

1

ρ(t)
λ(t−1),Aixi −

b

N

〉
+

1

2
‖xi − x

(t−1)
i ‖2

Q
(t)
i

]

=f(x) + ρ(t)

〈
Ax(t−1) − b +

1

ρ(t)
λ(t−1),Ax− b

〉
+

1

2
‖x− x(t−1)‖2Q(t)

over set X =
∏N
i=1 xi

Lemma 9. Let x∗ be any optimal solution of problem (1). Let Q(t) be defined in (29). If P(t)
i � 0

and ρ(t) > 0 in Algorithm 3 are chosen to satisfy
Q(t) � ρ(t)ATA (30)

Then, for all T ≥ 1, Algorithm 3 ensures that
T∑
t=1

ρ(t)f(x(t)) ≤
T∑
t=1

ρ(t)f(x∗) +
1

2

T∑
t=1

ρ(t)Θ(t) − 1

2
‖λ(T)‖2

where Θ(t) ∆
= ‖x∗ − x(t−1)‖2

Q(t) − ‖x∗ − x(t)‖2
µI+Q(t) .

Proof. Fix T ≥ 1. For any t ∈ {1, 2, . . . , T}, by Corollary 2, x(t) is chosen to minimize f(x) +

ρ(t)
〈
Ax(t−1) − b + 1

ρ(t)
λ(t−1),Ax− b

〉
+ 1

2‖x − x(t−1)‖2
Q(t) over x ∈ X . Note that f(x) +

ρ(t)
〈
Ax(t−1) − b + 1

ρ(t)
λ(t−1),Ax− b

〉
is µ-convex since f(x) is µ-convex. By Corollary 1

(note that x∗ ∈ X), we have

f(x(t)) + ρ(t)

〈
Ax(t−1) − b +

1

ρ(t)
λ(t−1),Ax(t) − b

〉
+

1

2
‖x(t) − x(t−1)‖2Q(t)

≤f(x∗) + ρ(t)

〈
Ax(t−1) − b +

1

ρ(t)
λ(t−1),Ax∗ − b

〉
+

1

2
‖x∗ − x(t−1)‖2Q(t) (31)

− 1

2
‖x∗ − x(t)‖2µI+Q(t)

(a)
=f(x∗) +

1

2
Θ(t) (32)

where (a) follows because Ax∗ − b = 0 and Θ(t) ∆
= ‖x∗ − x(t−1)‖2

Q(t) − ‖x∗ − x(t)‖2
µI+Q(t) .

Recall that by part (2) of Lemma 3, we have〈
λ(t−1),Ax(t) − b

〉
=

1

2ρ(t)

(
‖λ(t)‖2 − ‖λ(t−1)‖2

)
− ρ(t)

2
‖Ax(t) − b‖2 (33)

By the basic identity 〈u,v〉 = 1
2‖u‖

2
2 + 1

2‖v‖
2 − 1

2‖u− v‖2 for any vector u,v, we have〈
Ax(t−1) − b,Ax(t) − b

〉
=

1

2
‖Ax(t−1) − b‖2 +

1

2
‖Ax(t) − b‖2 − 1

2
‖A(x(t) − x(t−1))‖2

(34)

Substituting (33)-(34) into (32) and rearranging terms yields

f(x(t)) ≤f(x∗) +
1

2
Θ(t) +

1

2ρ(t)

(
‖λ(t−1)‖2 − ‖λ(t)‖2

)
− ρ(t)

2
‖Ax(t−1) − b‖2

+
ρ(t)

2
‖A(x(t) − x(t−1))‖2 − 1

2
‖x(t) − x(t−1)‖2Q(t)

(a)

≤f(x∗) +
1

2
Θ(t) +

1

2ρ(t)

(
‖λ(t−1)‖2 − ‖λ(t)‖2

)
− 1

2
‖x(t) − x(t−1)‖2Q(t)−ρ(t)ATA

(b)

≤f(x∗) +
1

2
Θ(t) +

1

2ρ(t)

(
‖λ(t−1)‖2 − ‖λ(t)‖2

)

16

where (a) follows by ignoring the negative term−ρ
(t)

2 ‖Ax(t−1)−b‖2 and noting that ρ
(t)

2 ‖A(x(t)−
x(t−1))‖2 = 1

2‖x
(t) − x(t−1)‖2

ρ(t)ATA
; and (b) follows because Q(t) � ρ(t)ATA.

Multiplying ρ(t) on both sides and summing over t ∈ {1, . . . , T} yields
T∑
t=1

ρ(t)f(x(t)) ≤
T∑
t=1

ρ(t)f(x∗) +
1

2

T∑
t=1

ρ(t)Θ(t) +
1

2

T∑
t=1

(
‖λ(t−1)‖2 − ‖λ(t)‖2

)
(a)
=

T∑
t=1

ρ(t)f(x∗) +
1

2

T∑
t=1

ρ(t)Θ(t) − 1

2
‖λ(T)‖2

where (a) follows by simplifying the telescoping sums and recalling that λ(0) = 0.

The following lemma provides a few practical sufficient conditions that ensure (30)
Lemma 10. The condition (30) holds if any of the following three conditions holds

1. P
(t)
i = ν(t)I− ρ(t)AT

iAi with ν(t) ≥ ρ(t)‖A‖2.

2. P
(t)
i = ν(t)I with ν(t) ≥ ρ(t)‖A‖2.

3. P
(t)
i = ν

(t)
i I with ν(t)

i ≥ ρ(t)(N − 1)‖Ai‖22

Proof. Note that (30) holds trivially when the first or the second condition holds. To see (30) holds
when Pi = ν

(t)
i I with ν(t)

i ≥ ρ(t)(N − 1)‖Ai‖22, we note that for any z = [z1; . . . , zN] ∈ R
∑N
i=1 di ,

‖z‖2ρ(t)ATA−Q(t) =ρ(t)‖
N∑
i=1

Aizi‖2 −
N∑
i=1

‖zi‖2P(t)
i +ρ(t)AT

iAi

(a)

≤ρ(t)N

N∑
i=1

‖zi‖2AT
iAi
−

N∑
i=1

‖zi‖2P(t)
i +ρ(t)AT

iAi

=−
N∑
i=1

‖zi‖2P(t)
i −ρ(t)(N−1)AT

iAi

where (a) follows from the Cauchy-Schwarz inequality.

Remark 7. Note that the sufficient conditions developed in Lemma 10 are similar to the conditions
from [7], under which [7] shows Algorithm 3 with constant ρ and Pi can ensure x(t) eventually
converge to an optimal solution x∗ and has an o(1/t) non-ergodic convergence rate in the sense
‖xt+1 − x(t)‖2 = o(1/t). However, work [7] does not establish the convergence rate of objective
violations and feasibility violations shown in our Theorem 3. Furthermore, the fast O(1/T 2)
convergence for strongly convex case is not considered in [7].

Now we are ready to prove both parts of the theorem.

1. Proof of case µ = 0: Note that ρ(t) = ρ and P
(t)
i = Pi are chosen to satisfy (30) by Lemma 10.

By Lemma 9 (with µ = 0), we have

ρ

T∑
t=1

f(x(t)) ≤ρTf(x∗) +
1

2

T∑
t=1

ρ
(
‖x∗ − x(t−1)‖2Q − ‖x∗ − x(t)‖2Q

)
− 1

2
‖λ(T)‖2

≤ρTf(x∗) +
ρ

2
‖x∗ − x(0)‖2Q −

1

2
‖λ(T)‖2 (35)

Ignoring the (negative term) − 1
2‖λ

(T)‖2, dividing both sides by ρT , applying Jensen’s inequality
yields

f(xT) ≤ f(x∗) +
1

2T
‖x∗ − x(0)‖2Q,

17

which is (23) of our theorem.
By Lemma 4 (with ρ(t) = ρ), we have

ρ

T∑
t=1

f(x(t)) ≥ ρTf(x∗)− ‖λ∗‖‖λ(T)‖

Combining this with (35) and cancelling the common term yields

‖λ(T)‖2 − 2‖λ∗‖‖λ(T)‖ ≤ ρ‖x∗ − x(0)‖2Q
This quadratic inequality can be further be rewritten as(

‖λ(T)‖ − ‖λ∗‖
)2

≤ ‖λ∗‖2 + ρ‖x∗ − x(0)‖2Q

Thus, we have

‖λ(T)‖ ≤‖λ∗‖+
√
‖λ∗‖2 + ρ‖x∗ − x(0)‖2Q

(a)

≤2‖λ∗‖+
√
ρ‖x∗ − x(0)‖Q (36)

where (a) follows from the basic inequality
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0.

By part (1) of Lemma 3 (with ρ(t) = ρ), we have

ρ

T∑
t=1

(
Ax(t) − b

)
= λ(T)

Dividing both sides by ρT and taking the vector l2 norm on both sides yields

‖Ax(T) − b‖ ≤ 1

ρT
‖λ(T)‖

(a)

≤ 1

T

2‖λ∗‖
ρ

+
1

T

‖x∗ − x(0)‖Q√
ρ

where (a) follows from (36). Note this is (24) of our theorem.

2. Proof of case µ > 0: Note that ρ(t) = ρt and P
(t)
i = tρ‖A‖2 − tρAT

iAi are chosen to satisfy
(30) by Lemma 10. By Lemma 9, we have

T∑
t=1

ρ(t)f(x(t))

≤
T∑
t=1

ρ(t)f(x∗) +
1

2

T∑
t=1

ρ(t)
(
‖x∗ − x(t−1)‖2Q(t) − ‖x∗ − x(t)‖2µI+Q(t)

)
− 1

2
‖λ(T)‖2 (37)

where Q(t) = tρ‖A‖2I.
Note that

T∑
t=1

ρ(t)
(
‖x∗ − x(t−1)‖2Q(t) − ‖x∗ − x(t)‖2µI+Q(t)

)
=ρ‖x∗ − x(0)‖2ρ‖A‖2I −

T−1∑
t=1

(
ρ(t)‖x∗ − x(t)‖2µI+Q(t) − ρ(t+1)‖x∗ − x(t)‖2Q(t+1)

)
(38)

− ρT ‖x∗ − x(t)‖2µI+Q(T)

=ρ2‖A‖2‖x∗ − x(0)‖2 −
T−1∑
t=1

‖x∗ − x(t)‖2ρ(t)(µI+Q(t))−ρ(t+1)Q(t+1) − ρT ‖x∗ − x(t)‖2µI+Q(T)

(a)

≤ρ2‖A‖2‖x∗ − x(0)‖2 (39)

18

where (a) follows by ignoring the negative term−ρT ‖x∗−x(t)‖2
µI+Q(T) and noting that ρ(t)(µI+

Q(t))− ρ(t+1)Q(t+1) = (ρtµ+ ρ2t2‖A‖2 − ρ2(t+ 1)2‖A‖2)I = ρ(tµ− ρ(2t+ 1)‖A‖2)I �
ρµ(t − 2t+1

3)I � 0 where the first � follows because ρ ≤ µ
3‖A‖2 by our algorithm parameter

selection and the second � follows because t ≥ 1.
Substituting (39) into (37) yields

T∑
t=1

ρ(t)f(x(t)) ≤
T∑
t=1

ρ(t)f(x∗) +
ρ2

2
‖A‖2‖x∗ − x(0)‖2 − 1

2
‖λ(T)‖2 (40)

Ignoring the (negative term) − 1
2‖λ

(T)‖22, dividing both sides by
∑T
t=1 ρ

(t), applying Jensen’s
inequality yields

f(xT) ≤f(x∗) +
ρ2

2
∑T
t=1 ρ

(t)
‖A‖2‖x∗ − x(0)‖2

(a)
=f(x∗) +

ρ

T (T + 1)
‖A‖2‖x∗ − x(0)‖2

where (a) follows because
∑T
t=1 ρ

(t) = ρ
∑T
t=1 t = ρT (T+1)

2 . Note this is (25) of our theorem.
By Lemma 4, we have

T∑
t=1

ρ(t)f(x(t)) ≥
T∑
t=1

ρ(t)f(x∗)− ‖λ∗‖‖λ(T)‖

Combining this with (40) and cancelling the common term yields

‖λ(T)‖2 − 2‖λ∗‖‖λ(T)‖ ≤ ρ2‖A‖2‖x∗ − x(0)‖2

This quadratic inequality can be further be rewritten as(
‖λ(T)‖ − ‖λ∗‖

)2

≤ ‖λ∗‖2 + ρ2‖A‖2‖x∗ − x(0)‖2

Thus, we have

‖λ(T)‖ ≤‖λ∗‖+
√
‖λ∗‖2 + ρ2‖A‖2‖x∗ − x(0)‖2

(a)

≤2‖λ∗‖+ ρ‖A‖‖x∗ − x(0)‖ (41)

where (a) follows from the basic inequality
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0.

By part (1) of Lemma 3, we have

T∑
t=1

ρ(t)
(
Ax(t) − b

)
= λ(T)

Dividing both sides by
∑T
t=1 ρ

(t) and taking the vector l2 norm on both sides yields

‖Ax(T) − b‖ =
1∑T

t=1 ρ
(t)
‖λ(T)‖

(a)

≤ 4‖λ∗‖
ρT (T + 1)

+
2‖A‖‖x∗ − x(0)‖

T (T + 1)

where (a) follows from (41) and the fact that
∑T
t=1 ρ

(t) = ρ
∑T
t=1 t = ρT (T+1)

2 . Note this is
(26) of our theorem.

19

6.6 Proof of Lemma 2

Fix z ∈ Z . At each iteration k, the projected gradient update (6) in Algorithm 2 can be rewritten as

z(k) = argmin
z∈Z

{〈ζ(k), z− z(k−1)〉+
1

2γ(k)
‖z− z(k−1)‖2}.

Since the objective function is 1
γ(k) -convex, by Lemma 5, we have

〈ζ(k), z(k) − z(k−1)〉+
1

2γ(k)
‖z(k) − z(k−1)‖2 ≤〈ζ(k), z− z(k−1)〉+

1

2γ(k)
‖z− z(k−1)‖2

− 1

2γ(k)
‖z− z(k)‖2

Adding φ(z(k−1)) + 〈∇φ(z(k−1)) − ζ(k), z(k) − z(k−1)〉 + L
2 ‖z

(k) − z(k−1)‖2 on both sides and
rearranging terms yields

φ(z(k−1)) + 〈∇φ(z(k−1)), z(k) − z(k−1)〉+
L

2
‖z(k) − z(k−1)‖2

≤φ(z(k−1)) + 〈ζ(k), z− z(k−1)〉+
1

2γ(k)
‖z− z(k−1)‖2 − 1

2γ(k)
‖z− z(k)‖2

− 1

2
(

1

γ(k)
− L)‖z(k) − z(k−1)‖2 + 〈∇φ(z(k−1))− ζ(k), z(k) − z(k−1)〉 (42)

Since φ(·) is L-smooth, by the descent lemma, e.g., Proposition A.24 in [2], we have

φ(z(k)) ≤ φ(z(k−1)) + 〈∇φ(z(k−1)), z(k) − z(k−1)〉+
L

2
‖z(k) − z(k−1)‖2 (43)

By Young’s inequality, for any η(k) > 0, we have

〈∇φ(z(k−1))− ζ(k), z(k) − z(k−1)〉 ≤ 1

2η(k)
‖∇φ(xk−1)− ζ(k)‖2 +

η(k)

2
‖z(k) − z(k−1)‖2 (44)

Substituting (43) and (44) into (42) yields

φ(z(k)) ≤φ(z(k−1)) + 〈ζ(k), z− z(k−1)〉+
1

2γ(k)
‖z− z(k−1)‖2 − 1

2γ(k)
‖z− z(k)‖2

− 1

2
(

1

γ(k)
− L− η(k))‖z(k) − z(k−1)‖2 +

1

2η(k)
‖∇φ(xk−1)− ζ(k)‖2 (45)

For any fixed z, since ζ(k) is an unbiased i.i.d. stochastic gradient and z(t−1) is determined by
ζ(0), . . . , ζ(k−1), we have

E[〈ζ(k), z− z(k−1)〉] = 〈∇φ(z(k−1)), z− z(k−1)〉 (46)

By the bounded variance assumption, we have

E[‖∇φ(xk−1)− ζ(k)‖2] ≤ σ2 (47)

By the µ-strong convexity of φ(·), we have

φ(z(k−1)) + 〈∇φ(z(k−1)), z− z(k−1)〉 ≤ φ(z)− µ

2
‖z− z(k−1)‖2 (48)

Taking expectations on both sides of (45) and substituting (46)-(48) into it yields

E[φ(z(k))] ≤φ(z) +
1

2
(

1

γ(k)
− µ)E[‖z− z(k−1)‖2]− 1

2

1

γ(k)
E[‖z− z(k)‖2]

− 1

2
(

1

γ(k)
− L− η(k))E[‖z(k) − z(k−1)‖2] +

1

2η(k)
σ2 (49)

20

Note that if we take γ(k) = 2
µ(k+k0) , η(k) = µ

2 k, then 1
γ(k) − L − η(k) ≥ 0 since k0 ≥ 2κ = 2Lµ .

Thus, under the current choice of γ(k) and η(k), (49) implies that

E[φ(z(k))] ≤φ(z) +
µ

4
(k + k0 − 2)E[‖z− z(k−1)‖2]− µ

4
(k + k0)E[‖z− z(k)‖2] +

1

kµ
σ2

Multiplying both sides by k + k0 − 1 yields

(k + k0 − 1)E[φ(z(k))] ≤(k + k0 − 1)φ(z) +
µ

4
(k + k0 − 2)(k + k0 − 1)E[‖z− z(k−1)‖2]

− µ

4
(k + k0 − 1)(k + k0)E[‖z− z(k)‖2] +

k + k0 − 1

kµ
σ2

≤(k + k0 − 1)φ(z) +
µ

4
(k + k0 − 2)(k + k0 − 1)E[‖z− z(k−1)‖2]

− µ

4
(k + k0 − 1)(k + k0)E[‖z− z(k)‖2] +

k0

µ
σ2

Summing over k ∈ {1, 2, . . . ,K} and dividing both sides by
∑K
k=1(k + k0 − 1) yields

E[
1∑K

k=1(k + k0 − 1)

K∑
k=1

(k + k0 − 1)φ(z(k))]

≤φ(z) +
µ(k2

0 − k0)

2K(K + 2k0 − 1)
E[‖z− z(0)‖2]− µ(k2

0 − k0)

2K(K + 2k0 − 1)
E[‖z− z(K)‖2]− µ

2
E[‖z− z(K)‖2]

+
2k0σ

2

(K + 2k0 − 1)µ

Define ẑ
∆
= 1∑K

k=1(k+k0−1)
(k + k0 − 1)z(k). By Jensen’s inequality, we have

E[φ(ẑ)] ≤φ(z) +
µ(k2

0 − k0)

2K(K + 2k0 − 1)
E[‖z− z(0)‖2]− µ(k2

0 − k0)

2K(K + 2k0 − 1)
E[‖z− z(K)‖2]

− µ

2
E[‖z− z(K)‖2] +

2k0σ
2

(K + 2k0 − 1)µ

6.7 Proof of Theorem 1

For convenience of our presentation, we extract the assumption in Theorem 1 and call it Assumption
2:
Assumption 2. Convex program 1 satisfies the following:

1. The constraint set X is bounded, i.e., there exists constant R > 0 such that ‖x‖ ≤ R,∀x ∈ X .

2. The function f(x) has unbiased stochastic subgradients with a bounded second order moment,
i.e., there exists constant D > 0 such that Eξ[‖G(x; ξ)‖2] ≤ D2,∀x ∈ X .

Lemma 11. Consider convex program (1) under Assumption 2. Let x∗ be any optimal solution. If
ν(t) > 0 and ρ(t) > 0 in Algorithm 1 are chosen to satisfy

ν(t) ≥ ρ(t)‖A‖2,∀t,
and the sub-procedure STO-LOCAL (Algorithm 2) uses ẑ defined in Lemma 1 as the output then, for
all T ≥ 1, Algorithm 1 ensures
T∑
t=1

E[ρ(t)f(x(t))] ≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Λ(t)]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

2ρ(t)(B(t))2

ν(t)(K(t) + 1)

with

Γ(t) ∆
= ν(t)‖x∗ − y(t−1)‖2 − ν(t)‖x∗ − y(t)‖2, (50)

and

(B(t))2 ∆
= 2‖A‖2E[‖λ(t−1)‖2] + 6D2 + 6(ρ(t))2‖A‖2(‖A‖R+ ‖b‖)2 + 24(ν(t))2R2 (51)

where D and R are constants defined in Assumption 2.

21

Proof. Fix t ∈ {1, 2, . . . , T}. Define φ(t)(x) =
∑N
i=1 φ

(t)
i (xi). Since φ(t)(x) is separa-

ble with respect to each xi, the fact that Algorithm 1 updates each xi and yi locally and
in parallel by calling sub-procedure (x

(t)
i ,y

(t)
i) = STO-LOCAL(φ

(t)
i (·),Xi,y(t−1)

i ,K(t)) can
be interpreted as all N nodes jointly update x and y via calling sub-procedure (x(t),y(t)) =
STO-LOCAL(φ(t)(·),X ,y(t−1),K(t)). (Note that the synchronization of parallel sub-procedures
STO-LOCAL(φ

(t)
i (·),Xi,y(t−1)

i ,K(t)) is not needed since these sub-procedures are fully decoupled.
We just need to aggregate the variables with the same index together and write it into the above
compact form.)

For each i ∈ {1, 2, . . . , N}, the unbiased stochastic subgradient used in each iteration k ∈
{1, 2, . . . ,K(t)} of Algorithm 2 is given by

ζ
(k)
i = G

(k)
i + AT

i (ρ(t)(Ay(t−1) − b) + λ(t−1)) + ν(t)(z
(k)
i − y

(t−1)
i)

where G
(k)
i is an unbiased stochastic subgradient for fi(xi) at point xi = z

(k)
i .

Define ζ(k) = [ζ
(k)
1 ; . . . ; ζ

(k)
N] = G(k)+AT(ρ(t)(Ay(t−1)−b)+λ(t−1))+ν(t)(z(k)−y(t−1)),∀k ∈

{1, 2, . . . ,K(t)}. Then, ζ(k) is the unbiased stochastic subgradient used in each iteration of the joint
sub-procedure (x(t),y(t)) = STO-LOCAL(φ(t)(·),X ,y(t−1),K(t)).

Note that

E[‖ζ(k)‖2]
(a)

≤2E[‖ATλ(t−1)‖2] + 6(E[‖G(k)‖2] + 6E[‖ρ(t)AT(Ay(t−1) − b)‖2]

+ 6E[‖ν(t)(z(k) − y(t−1))‖2])

(b)

≤2‖A‖2E[‖λ(t−1)‖2] + 6D2 + 6(ρ(t))2‖A‖2(‖A‖R+ ‖b‖)2 + 24(ν(t))2R2

(c)
=(B(t))2

where (a) follows from the basic inequality ‖v1 + v2 + v3 + v4‖2 ≤ 2‖v1‖2 + 6‖v2‖2 + 6‖v3‖2 +
6‖v4‖2, which can be easily shown by noting that ‖v1 + v2 + v3 + v4‖2 ≤ 2‖v1‖2 + 2‖v2 + v3 +
v4‖2 ≤ 2‖v1‖2 + 2 · (3‖v2‖2 + 3‖v3‖2 + 3‖v4‖2); (b) follows from Assumption 2 and basic matrix
norm inequalities; and (c) follows from the definition of B(t) in (51).

Since φ(t)(·) is ν(t)-convex (with ν(t) > 0), by Lemma 1, we have

E[φ(t)(x(t))] ≤ E[φ(t)(x∗)]− ν(t)

2
E[‖y(t) − x∗‖2] +

2(B(t))2

ν(t)(K(t) + 1)
.

Substituting the expression of φ(t)
i (·) (defined in (2)) into the above equation yields

E[f(x(t))] + ρ(t)E[〈Ay(t−1) − b,Ax(t) − b〉] + E[〈λ(t−1),Ax(t) − b〉]

+
ν(t)

2
E[‖x(t) − y(t−1)‖2]

≤E[f(x∗)] + ρ(t)E[〈Ay(t−1) − b,Ax∗ − b〉] + E[〈λ(t−1),Ax∗ − b〉] +
ν(t)

2
E[‖x∗ − y(t−1)‖2]

− ν(t)

2
E[‖x∗ − y(t)‖2] +

2(B(t))2

ν(t)(K(t) + 1)

(a)
=E[f(x∗)] +

1

2
E[Γ(t)] +

2(B(t))2

ν(t)(K(t) + 1)
(52)

where (a) follows because Ax∗ − b = 0 and Γ(t) = ν(t)‖x∗ − y(t−1)‖2 − ν(t)‖x∗ − y(t)‖2.

Recall that by part (2) of Lemma 3, we have〈
λ(t−1),Ax(t) − b

〉
=

1

2ρ(t)

(
‖λ(t)‖2 − ‖λ(t−1)‖2

)
− ρ(t)

2
‖Ax(t) − b‖2 (53)

22

By the basic identity 〈u,v〉 = 1
2‖u‖

2
2 + 1

2‖v‖
2 − 1

2‖u− v‖2 for any vector u,v, we have〈
Ay(t−1) − b,Ax(t) − b

〉
=

1

2
‖Ay(t−1) − b‖2 +

1

2
‖Ax(t) − b‖2 − 1

2
‖A(x(t) − y(t−1))‖2

(54)

Substituting (53) and (54) into (52) and rearranging terms yields

E[f(x(t))] ≤E[f(x∗)] +
1

2
E[Λ(t)] +

1

2ρ(t)
E[‖λ(t−1)‖2 − ‖λ(t)‖2]− ρ(t)

2
E[‖Ay(t−1) − b‖2]

+
ρ(t)

2
E[‖A(x(t) − y(t−1))‖2]− ν(t)

2
E[‖x(t) − y(t−1)‖2] +

2(B(t))2

ν(t)(K(t) + 1)

(a)

≤E[f(x∗)] +
1

2
E[Γ(t)] +

1

2ρ(t)
E[‖λ(t−1)‖2 − ‖λ(t)‖2] +

2(B(t))2

ν(t)(K(t) + 1)

where (a) follows by ignoring the negative term −ρ
(t)

2 E[‖Ay(t−1) − b‖2] and noting that
ρ(t)‖A(x(t) − y(t−1))‖2 − ν(t)‖x(t) − y(t−1)‖2 ≤ 0 for any x(t) and y(t−1) as long as ν(t) ≥
ρ(t)‖A‖2.

Multiplying both sides by ρ(t) and summing over t ∈ {1, 2, . . . , T} yields

T∑
t=1

E[ρ(t)f(x(t))] ≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Γ(t)] +
1

2

T∑
t=1

E[‖λ(t−1)‖2 − ‖λ(t)‖2]

+

T∑
t=1

2ρ(t)(B(t))2

ν(t)(K(t) + 1)

(a)
=

T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Γ(t)]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

2ρ(t)(B(t))2

ν(t)(K(t) + 1)

where (a) follows by simplifying the telescoping sum and recalling that λ(0) = 0.

Lemma 12. Consider convex program (1) under Assumption 1-2. Let (x∗,λ∗) be any saddle point
defined in Assumption 1. For all T ≥ 1, if we choose any fixed ρ(t) = ρ > 0, ν(t) = ν > 8ρ‖A‖2,
Kt = K ≥ T in Algorithm 1 and the sub-procedure STO-LOCAL (Algorithm 2) uses ẑ defined in
Lemma 1 as the output, then we have

E[‖λ(t)‖2] ≤ Q,∀t ∈ {0, 1, . . . , T}
where

Q
∆
=

2‖λ∗‖+
√
ρν‖x∗ − y(0)‖2 + 24ρD2

ν + 24(ρ)3‖A‖2(‖A‖R+‖b‖)2
ν + 96νρR2

1−
√

8ρ‖A‖2
ν

2

is an absoute constant (independent of T) with constants R,D defined in Assumption 2.

Proof. We prove this lemma by inductions. Note that λ(0) = 0 trivially satisfies E[‖λ(0)‖2] ≤ Q.
Assume E[‖λ(t)‖2] ≤ Q holds for all t ≤ t0 with 0 ≤ t0 ≤ T − 1 and consider t = t0 + 1.

By Lemma 4, we have
t0+1∑
t=1

ρf(x∗)−
t0+1∑
t=1

ρf(x(t)) ≤ ‖λ∗‖‖λ(t0+1)‖

Taking expectations on both sides yields
t0+1∑
t=1

E[ρf(x∗)]−
t0+1∑
t=1

E[ρf(x(t))] ≤‖λ∗‖E[‖λ(t0+1)‖]
(a)

≤ ‖λ∗‖
√

E[‖λ(t0+1)‖2] (55)

23

where (a) follows because E[X2] ≥ (E[X])2 for any random variable X .

Note that our selection of ρ(t) = ρ and ν(t) = ν > 8ρ‖A‖2 satisfies the condition in Lemma 11. By
Lemma 11, we have
t0+1∑
t=1

E[ρf(x(t))]

≤
t0+1∑
t=1

E[ρf(x∗)] +
ρν

2

t0+1∑
t=1

E[‖x∗ − y(t−1)‖2 − ‖x∗ − y(t)‖2]− 1

2
E[‖λ(t0+1)‖2] +

t0+1∑
t=1

2ρ(B(t))2

ν(K + 1)

≤
t0+1∑
t=1

E[ρf(x∗)] +
ρν

2
‖x∗ − y(0)‖2 − 1

2
E[‖λ(t0+1)‖2] +

t0+1∑
t=1

2ρ(B(t))2

ν(K + 1)

Rearranging terms yields

E[‖λ(t0+1)‖2] ≤2

(
t0+1∑
t=1

E[ρf(x∗)]−
t0+1∑
t=1

E[ρf(x(t))]

)
+ ρν‖x∗ − y(0)‖2 +

t0+1∑
t=1

4ρ(B(t))2

ν(K + 1)

(a)

≤2‖λ∗‖
√

E[‖λ(t0+1)‖2] + ρν‖x∗ − y(0)‖2 +

t0+1∑
t=1

4ρ(B(t))2

ν(K + 1)
(56)

where (a) follows by using (55).

Recalling the definition of (B(t))2 in (51) (with ρ(t) = ρ and ν(t) = ν), we have

t0+1∑
t=1

4ρ(B(t))2

ν(K + 1)

=
4ρ

ν(K + 1)

t0+1∑
t=1

(
2‖A‖2E[‖λ(t−1)‖2] + 6D2 + 6(ρ)2‖A‖2(‖A‖R+ ‖b‖)2 + 24(ν)2R2

)
(a)

≤ 24ρD2

ν
+

24(ρ)3‖A‖2(‖A‖R+ ‖b‖)2

ν
+ 96νρR2 +

8ρ‖A‖2

ν
Q (57)

where (a) follows because t0 + 1 ≤ (K+ 1) by our selection of K and E[‖λ(t)‖2] ≤ Q,∀0 ≤ t ≤ t0
by induction hypothesis.

Denote c ∆
= ρν‖x∗ − y(0)‖2 + 24ρD2

ν + 24(ρ)3‖A‖2(‖A‖R+‖b‖)2
ν + 96νρR2. Note that Q =(

2‖λ∗‖+
√
c

1−
√

8ρ‖A‖2
ν

)2

. Substituting (57) into (56) yields

E[‖λ(t0+1)‖2]] ≤ 2‖λ∗‖
√

E[‖λ(t0+1)‖2] + c+
8ρ‖A‖2

ν
Q.

This can be rewritten as(√
E[‖λ(t0+1)‖2]− ‖λ∗‖

)2

≤ ‖λ∗‖2 + c+
8ρ‖A‖2

ν
Q,

which further implies that√
E[‖λ(t0+1)‖2] ≤‖λ∗‖+

√
‖λ∗‖2 + c+

8ρ‖A‖2
ν

Q

(a)

≤2‖λ∗‖+
√
c+

√
8ρ‖A‖2

ν

√
Q

=
2‖λ∗‖+

√
c

1−
√

8ρ‖A‖2
ν

24

where (a) follows from the basic inequality
√
a1 + a2 + a3 ≤

√
a1 +

√
a2 +

√
a3 for all a1, a2, a3 ≥

0; and (b) follows by substituting Q =

(
2‖λ∗‖+

√
c

1−
√

8ρ‖A‖2
ν

)2

.

Squaring both sides yields

E[‖λ(t0+1)‖2] ≤

 2‖λ∗‖+
√
c

1−
√

8ρ‖A‖2
ν

2

= Q

By far, we have shown E[‖λ(t)‖2] ≤ Q for t = t0 + 1. Thus, this lemma follows by inductions.

Main proof of Theorem 1: Now, we are ready to prove the theorem. Fix T ≥ 1. By Lemma 11,

T∑
t=1

E[ρf(x(t))]

≤
Ts∑
t=1

E[ρf(x∗)] +
ρν

2

T∑
t=1

E[‖x∗ − y(t−1)‖2 − ‖x∗ − y(t)‖2]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

2ρ(B(t))2

ν(K + 1)

≤
t0+1∑
t=1

E[ρf(x∗)] +
ρν

2
‖x∗ − y(0)‖2 +

T∑
t=1

2ρ(B(t))2

ν(K + 1)
(58)

Dividing both sides by ρT and applying Jensen’s inequality yields

Ef(xT)] ≤f(x∗)] +
ν

2T
‖x∗ − y(0)‖2 +

2

νT

T∑
t=1

(B(t))2

K + 1
(59)

Note that for all t ∈ {1, 2, . . . , T}, we have

(B(t))2

K + 1
=

2‖A‖2E[‖λ(t−1)‖2] + 6D2 + 6ρ2‖A‖2(‖A‖R+ ‖b‖)2 + 24ν2R2

K + 1
(a)

≤ 2‖A‖2Q+ 6D2 + 6ρ2‖A‖2(‖A‖R+ ‖b‖)2 + 24ν2R2

T
(60)

where (a) follows because E[‖λ(t)‖2] ≤ Q,∀t ∈ {0, 1, . . . , T} by Lemma 12 and K ≥ T .

Substituting (60) into (59) yields

Ef(xT)] ≤f(x∗) +
ν

2T
‖x∗ − y(0)‖2 +

C

νT

with C ∆
= 4‖A‖2Q+ 12D2 + 12ρ2‖A‖2(‖A‖R+ ‖b‖)2 + 48ν2R2. This is (9) of our theorem.

By part (1) of Lemma 3 (with ρ(t) = ρ), we have
∑T
t=1 ρ

(
Ax(t) − b

)
= λ(T). Dividing both sides

by ρT , taking the vector l2 norm and then taking expectations on both sides yields

E[‖Ax(T) − b‖] =
1

ρT
E[‖λ(T)‖]

≤ 1

ρT

√
E[‖λ(T)‖2]

(a)

≤
√
Q

ρT

where (a) follows from Lemma 12. This is (10) of our theorem.

25

6.8 Proof of Theorem 2

For convenience of our presentation, we extract the assumptions in Theorem 2 and call it Assumption
3:

Assumption 3. Convex program (1) satisfies the following:

• The function f(x) is L-smooth.

• The function f(x) has unbiased stochastic gradients with a bounded variance, i.e., there exists
constant σ > 0 such that Eξ[‖G(x; ξ)−∇f(x)‖2] ≤ σ2,∀x ∈ X .

Lemma 13. Consider convex program (1) with µ-convex stochastic objective functions under As-
sumption 3. Let x∗ be any optimal solution. If ν(t) > 0 and ρ(t) > 0 in Algorithm 1 are chosen to
satisfy

ν(t) ≥ ρ(t)‖A‖2,∀t,

and the sub-procedure STO-LOCAL (Algorithm 2) uses k0 ≥ 2ν
(t)+L
ν(t)+µ

,∀t and ẑ defined in Lemma 2
as the output, then, for all T ≥ 1, Algorithm 1 ensures

T∑
t=1

E[ρ(t)f(x(t))]

≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Λ(t)]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

2ρ(t)k0σ
2

(ν(t) + µ)(K(t) + 2k0 − 1)

Λ(t) ∆
=

(
ν(t) +

(ν(t) + µ)(k2
0 − k0)

Kt(Kt + 2k0 − 1)

)
‖x∗ − y(t−1)‖2 −

(
ν(t) + µ+

(ν(t) + µ)(k2
0 − k0)

Kt(Kt + 2k0 − 1)

)
‖x∗ − y(t)‖2

(61)

and σ2 is the constant defined in Assumption 3.

Proof. Fix t ∈ {1, 2, . . . , T}. Define φ(t)(x) =
∑N
i=1 φ

(t)
i (xi). Note that φ(t)(x) is (L + ν(t))-

smooth and (µ + ν(t))-convex. Similarly to the observation in the proof of Lemma 11, each
iteration of Algorithm 1 is to jointly update x and y via the sub-procedure (x(t),y(t)) =
STO-LOCAL(φ(t)(·),X ,y(t−1),K(t)). Note that the stochastic gradient used in each iteration
of the sub-procedure is given by

ζ(k) = G(k) + AT(ρ(t)(Ay(t−1) − b) + ν(t)(z(k) − y(t−1)))

and has the same variance bound σ2 as the stochastic gradient of f(x).

By Lemma 2, we have

E[φ(t)(x(t))]

≤E[φ(t)(x∗)] +
(ν(t) + µ)(k2

0 − k0)

2K(t)(K(t) + 2k0 − 1)
E[‖x∗ − y(t−1)‖2]− (ν(t) + µ)(k2

0 − k0)

2K(t)(K(t) + 2k0 − 1)
E[‖x∗ − y(t)‖2]

− ν(t) + µ

2
E[‖x∗ − y(t)‖2] +

2k0σ
2

(K(t) + 2k0 − 1)(ν(t) + µ)
(62)

26

Substituting the expression of φ(t)
i (·) (defined in (2)) into the above equation (and recalling r(t) =

Ay(t−1) − b) yields

E[f(x(t))] + ρ(t)E[〈Ay(t−1) − b,Ax(t) − b〉] + E[〈λ(t−1),Ax(t) − b〉]

+
ν(t)

2
E[‖x(t) − y(t−1)‖2]

≤E[f(x∗)] + ρ(t)E[〈Ay(t−1) − b,Ax∗ − b〉] + E[〈λ(t−1),Ax∗ − b〉] +
ν(t)

2
E[‖x∗ − y(t−1)‖2]

+
(ν(t) + µ)(k2

0 − k0)

2K(t)(K(t) + 2k0 − 1)
E[‖x∗ − y(t−1)‖2]− (ν(t) + µ)(k2

0 − k0)

2K(t)(K(t) + 2k0 − 1)
E[‖x∗ − y(t)‖2]

− (ν(t) + µ)

2
E[‖x∗ − y(t)‖2] +

2k0σ
2

(K(t) + 2k0 − 1)(ν(t) + µ)

(a)
=E[f(x∗)] +

1

2
E[Λ(t)] +

2k0σ
2

(K(t) + 2k0 − 1)(ν(t) + µ)
(63)

where (a) follows from Ax∗ − b = 0 and the definition of Λ(t) in (61).

The remaining part of our proof is almost identical to the proof of Lemma 11. Recall that by part (2)
of Lemma 3, we have〈

λ(t−1),Ax(t) − b
〉

=
1

2ρ(t)

(
‖λ(t)‖2 − ‖λ(t−1)‖2

)
− ρ(t)

2
‖Ax(t) − b‖2 (64)

By the basic identity 〈u,v〉 = 1
2‖u‖

2 + 1
2‖v‖

2 − 1
2‖u− v‖2 for any vector u,v, we have〈

Ay(t−1) − b,Ax(t) − b
〉

=
1

2
‖Ay(t−1) − b‖2 +

1

2
‖Ax(t) − b‖2 − 1

2
‖A(x(t) − y(t−1))‖2

(65)

Substituting (64) and (65) into (63) and rearranging terms yields

E[f(x(t))]

≤E[f(x∗)] +
1

2
E[Λ(t)] +

1

2ρ(t)
E[‖λ(t−1)‖2 − ‖λ(t)‖2]− ρ(t)

2
‖Ay(t−1) − b‖2

+
ρ(t)

2
E[‖A(x(t) − y(t−1))‖2]− ν(t)

2
E[‖x(t) − y(t−1)‖2] +

2k0σ
2

(K(t) + 2k0 − 1)(ν(t) + µ)

(a)

≤E[f(x∗)] +
1

2
E[Λ(t)] +

1

2ρ(t)
E[‖λ(t−1)‖2 − ‖λ(t)‖2] +

2k0σ
2

(K(t) + 2k0 − 1)(ν(t) + µ)

where (a) follows by ignoring the negative term−ρ
(t)

2 ‖Ay(t−1)−b‖2 and noting that ρ(t)‖A(x(t)−
y(t−1))‖2 − ν(t)‖x(t) − y(t−1)‖2 ≤ 0 for any x(t) and y(t−1) as long as ν(t) ≥ ρ(t)‖A‖2.

Multiplying both sides by ρ(t) and summing over t ∈ {1, 2, . . . , T} yields
T∑
t=1

E[ρ(t)f(x(t))]

≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Λ(t)] +
1

2

T∑
t=1

E[‖λ(t−1)‖2 − ‖λ(t)‖2]

+

T∑
t=1

2ρ(t)k0σ
2

(K(t) + 2k0 − 1)(ν(t) + µ)

(a)
=

T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Λ(t)]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

2ρ(t)k0σ
2

(K(t) + 2k0 − 1)(ν(t) + µ)

where (a) follows by simplifying the telescoping sums and recalling that λ(0) = 0.

27

Now we are ready to prove both parts of the theorem.

1. Proof of case µ = 0: Fix T ≥ 1. Note that our selection of ρ(t) = ρ, ν(t) = ν ≥ ρ‖A‖2 and
positive integer k0 ≥ 2L+ν

ν satisfies the condition in Lemma 13. By Lemma 13 (with µ = 0), we
have

T∑
t=1

E[ρf(x(t))] ≤
T∑
t=1

E[ρf(x∗)] +
ρ

2

T∑
t=1

E[Λ(t)]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

2ρk0σ
2

(T + 2k0 − 1)ν

(66)

Note that
T∑
t=1

Λ(t) =ν
(

1 +
k2

0 − k0

T (T + 2k0 − 1)

) T∑
t=1

(
‖x∗ − y(t−1)‖2 − ‖x∗ − y(t)‖2

)
=ν
(

1 +
k2

0 − k0

T (T + 2k0 − 1)

)(
‖x∗ − y(0)‖2 − ‖x∗ − yT ‖2

)
≤ν
(

1 +
k2

0 − k0

T (T + 2k0 − 1)

)
‖x∗ − y(0)‖2 (67)

and
T∑
t=1

2ρk0σ
2

(T + 2k0 − 1)ν
=

2ρk0σ
2

ν

T

T + 2k0 − 1
≤ 2ρk0σ

2

ν
(68)

Substituting (67)-(68) into (66) yields

T∑
t=1

E[ρf(x(t))]

≤
T∑
t=1

E[ρf(x∗)] +
ρν

2

(
1 +

k2
0 − k0

T (T + 2k0 − 1)

)
‖x∗ − y(0)‖2 +

2ρk0σ
2

ν
− 1

2
E[‖λ(T)‖2]

(a)

≤
T∑
t=1

E[ρf(x∗)] +
ρν(k0 + 1)

4
‖x∗ − y(0)‖2 +

2ρk0σ
2

ν
− 1

2
E[‖λ(T)‖2] (69)

where (a) follows because k20−k0
T (T+2k0−1) ≤

k0−1
2 when T ≥ 1.

Ignoring the negative term − 1
2E[‖λ(T)‖2], dividing both sides by ρT and applying Jensen’s

inequality yields

E[f(x(T))] ≤ f(x∗) +
1

T

ν(k0 + 1)

4
‖x∗ − y(0)‖2 +

1

T

2k0σ
2

ν

This is (11) of our theorem.
By Lemma 4 (after taking expectations on both sides), we have

E[

T∑
t=1

ρf(x(t))] ≥
T∑
t=1

E[ρf(x∗)]− ‖λ∗‖E[‖λ(T)‖]

Combining this inequality with (69) and cancelling the common terms yields

E[‖λ(T)‖2] ≤ 2‖λ∗‖E[‖λ(T)‖] +
ρν(k0 + 1)

2
‖x∗ − y(0)‖2 +

4ρk0σ
2

ν

Since
(
E[‖λ(T)‖]

)2

≤ E[‖λ(T)‖2], we further have(
E[‖λ(T)‖]

)2

≤ 2‖λ∗‖E[‖λ(T)‖] +
ρν(k0 + 1)

2
‖x∗ − y(0)‖2 +

4ρk0σ
2

ν

28

This quadratic inequality can be rewritten as(
E[‖λ(T)‖]− ‖λ∗‖

)2

≤ ‖λ∗‖2 +
ρν(k0 + 1)

2
‖x∗ − y(0)‖2 +

4ρk0σ
2

ν

Thus, we have

E[‖λ(T)‖] ≤‖λ∗‖+

√
‖λ∗‖2 +

ρν(k0 + 1)

2
‖x∗ − y(0)‖2 +

4ρk0σ2

ν

≤2‖λ∗‖+

√
ρν(k0 + 1)

2
‖x∗ − y(0)‖2 +

4ρk0σ2

ν
(70)

≤2‖λ∗‖+

√
ρν(k0 + 1)

2
‖x∗ − y(0)‖+

√
4ρk0σ2

ν
(71)

By part (1) of Lemma 3 (with ρ(t) = ρ), we have

T∑
t=1

ρ
(
Ax(t) − b

)
= λ(T)

Dividing both sides by ρT , taking the vector l2 norm and then taking expectations on both sides
yields

E[‖Ax(T) − b‖] =
1

ρT
E[‖λ(T)‖]

(a)

≤ 1

T

(
2

ρ
‖λ∗‖+

√
ν(k0 + 1)

2ρ
‖x∗ − y(0)‖+ 2

√
k0σ2

ρν

)
where (a) follows from (71). This is (78) of our theorem.

2. Proof of Case µ > 0: Note that our selection of ρ(t) = tρ, ν(t) = tρ‖A‖2 and k0 ≥ 2(1 + L
µ)

satisfies the conditions in Lemma 13. By Lemma 13, we have

T∑
t=1

E[ρ(t)f(x(t))] ≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Λ(t)]− 1

2
E[‖λ(T)‖2]

+

T∑
t=1

2ρ(t)k0σ
2

(ν(t) + µ)(K(t) + 2k0 − 1)
(72)

Recalling the definition of Λt in (61), we have

T∑
t=1

ρ
(t)

Λ
(t)

=ρ

(
ρ‖A‖2 +

(ρ‖A‖2 + µ)(k20 − k0)

2(2k0 − 1)2

)
‖x∗ − y

(0)‖2

−
T−1∑
t=1

(
ρ
(
ρt

2‖A‖2 + tµ− ρ(t+ 1)
2‖A‖2

)
+ ρ
(ρt‖A‖2 + µ

t+ 1
−
ρ(t+ 1)‖A‖2 + µ

t+ 2

) k20 − k0
(2k0 − 1)2

)
‖x∗ − y

(t)‖2

− Tρ
(
Tρ‖A‖2 + µ+

(ρT‖A‖2 + µ

T (T + 1)

) k20 − k0
(2k0 − 1)2

)
‖x∗ − y

(T)‖2

(a)

≤ ρ
(
ρ‖A‖2 +

(ρ‖A‖2 + µ)(k20 − k0)

2(2k0 − 1)2

)
‖x∗ − y

(0)‖2 (73)

where (a) follows by ignoring the last negative term and noting that ρt2‖A‖2 + tµ − ρ(t +
1)2‖A‖2 = tµ− ρ(2t+ 1)‖A‖2 ≥ µ(t− 2t+1

3) ≥ 0 for all t ≥ 1, where the first inequality uses

ρ ≤ µ
3‖A‖2 ; and ρt‖A‖2+µ

t+1 − ρ(t+1)‖A‖2+µ
t+2 = µ−ρ‖A‖2

(t+1)(t+2) ≥ 0, where the inequality also uses
ρ ≤ µ

3‖A‖2 .

29

We also note that
T∑
t=1

2ρ(t)k0σ
2

(ν(t) + µ)(K(t) + 2k0 − 1)
=

2k0σ
2ρ

2k0 − 1

T∑
t=1

t

(ρt‖A‖2 + µ)(t+ 1)

(a)

≤ 2k0σ
2

2k0 − 1

T∑
t=1

t

(t+ 1)(t+ 3)‖A‖2

≤ 2k0σ
2

(2k0 − 1)‖A‖2
T∑
t=1

1

t+ 1

≤ 2k0σ
2

(2k0 − 1)‖A‖2
log(T + 1) (74)

where (a) follows because µ ≥ 3ρ‖A‖2 by ρ ≤ µ
3‖A‖2 .

Substituting (73) and (74) into (72) yields

T∑
t=1

E[ρ(t)f(x(t))]

≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2
ρ

(
ρ‖A‖2 +

(ρ‖A‖2 + µ)(k2
0 − k0)

2(2k0 − 1)2

)
‖x∗ − y(0)‖2 − 1

2
E[‖λ(T)‖2]

+
2k0σ

2

(2k0 − 1)‖A‖2
log(T + 1)

(a)

≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2
ρc1‖x∗ − y(0)‖2 − 1

2
E[‖λ(T)‖2] +

1

2
c2 log(T + 1) (75)

where (a) follows because c1 = ρ‖A‖2 +
(ρ‖A‖2+µ)(k20−k0)

2(2k0−1)2 and c2 = 4k0σ
2

(2k0−1)‖A‖2 .

Ignoring the negative term − 1
2E[‖λ(T)‖2], dividing both sides by

∑T
t=1 ρ

(t) and applying
Jensen’s inequality yields

E[f(x(T))] ≤f(x∗) +
1

2
∑T
t=1 ρ

(t)

(
ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

)
(a)
=f(x∗) +

1

T (T + 1)

(
c1‖x∗ − y(0)‖2 +

c2
ρ

log(T + 1)

)
where (a) follows because

∑T
t=1 ρ

(t) = ρ
∑T
t=1 t = ρT (T+1)

2 . This is (77) of our theorem.
By Lemma 4 (after taking expectations on both sides), we have

E[

T∑
t=1

ρ(t)f(x(t))] ≥
T∑
t=1

E[ρ(t)f(x∗)]− ‖λ∗‖E[‖λ(T)‖]

Combining this inequality with (75) and cancelling the common terms yields

E[‖λ(T)‖2] ≤ 2‖λ∗‖E[‖λ(T)‖] + ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

Since
(
E[‖λ(T)‖]

)2

≤ E[‖λ(T)‖2], we further have(
E[‖λ(T)‖]

)2

≤ 2‖λ∗‖E[‖λ(T)‖] + ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

This quadratic inequality can be rewritten as(
E[‖λ(T)‖]− ‖λ∗‖

)2

≤ ‖λ∗‖2 + ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

30

Thus, we have

E[‖λ(T)‖] ≤‖λ∗‖+
√
‖λ∗‖2 + ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

≤2‖λ∗‖+
√
ρc1‖x∗ − y(0)‖+

√
c2 log(T + 1) (76)

By part (1) of Lemma 3 (with ρ(t) = ρ), we have
T∑
t=1

ρ
(
Ax(t) − b

)
= λ(T)

Dividing both sides by
∑T
t=1 ρ

(t) = ρT (T+1)
2 , taking the vector l2 norm and then taking expecta-

tions on both sides yields

E[‖Ax(T) − b‖] =
2

T (T + 1)
E[‖λ(T)‖]

(a)

≤ 2

T (T + 1)

(
4‖λ∗‖
ρ

+

√
c1√
ρ
‖x∗ − y(0)‖+

√
c2 log(T + 1)

ρ

)
where (a) follows from (76). This is (78) of our theorem.

6.9 Performance of Algorithm 1 for strongly convex non-smooth problems

In this subsection, we consider stochastic convex program (1) under the the following assumption.
Assumption 4. Convex program (1) satisfies the following:

• The function f(x) satisfies (15).

• The function f(x) has unbiased stochastic subgradients with a bounded second order moment,
i.e., there exists constant D > 0 such that Eξ[‖G(x; ξ)‖2] ≤ D2,∀x ∈ X .

Theorem 4. Consider convex program (1) with µ-convex (µ > 0) possibly non-smooth function
under Assumption 1 and Assumption 4. Let (x∗,λ∗) be any saddle point defined in Assumption 1.

If the sub-procedure STO-LOCAL (Algorithm 2) uses ẑ ∆
= 1∑K

k=1(k+k0−1)
(k + k0 − 1)z(k) as the

output and ρ ≤ µ
3‖A‖2 , ρ

(t) = tρ, ν(t) = tρ‖A‖2, k0 = 2 and Kt = 3t in Algorithm 1, then for all
T ≥ 1,

E[f(xT)] ≤ f(x∗) +
1

T (T + 1)

(
c1‖x∗ − y(0)‖2 +

c2
ρ

log(T + 1)

)
(77)

E[‖Ax(T) − b‖] ≤ 2

T (T + 1)

(
4‖λ∗‖
ρ

+

√
c1√
ρ
‖x∗ − y(0)‖+

√
c2 log(T + 1)

ρ

)
(78)

where x(T) = 1∑T
t=1 ρ

(t)

∑T
t=1 ρ

(t)x(t); and c1
∆
= ρ‖A‖2 + 2(ρ‖A‖2+µ)

18 ,c2
∆
= 16(B2+M2)

3‖A‖2 are two
constants.

We first develop a lemma that summarizes that Algorithm 2 behaves well as a sub-procedure under
Assumption 4. This lemma essentially says Algorithm 2 has good performance when used to minimize
a stochastic function that is the sum of a smooth part and a part that satisfying (15).

Lemma 14. Assume φ(z) = φ̇(z) + φ̈(z) where φ̇(z) is µ1-convex and satisfies that the assumption
that there exists a constant M > 0 such that

φ̇(z1) ≤ φ̇(z2) + 〈d, z1 − z2〉+M‖z1 − z2‖, (79)

for all z1, z2 ∈ Z and d ∈ ∂φ̇(z1); and φ̈(z) is a L-smooth and µ2-convex deterministic function
(µ2 > 0) over set Z with conditional number κ = L

µ2
= 1. Assume there exists a constant B such

that the unbiased subgradient ζ(k) used in Algorithm 2 satisfy

E[‖ζ(k)‖2] ≤ B2,∀k ∈ {1, 2, . . . ,K}

31

If we take k0 = 2 in Algorithm 2, then we have

E[φ(ẑ)] ≤φ(z) +
µ

K(K + 3)
E[‖z− z(0)‖2]− µ

K(K + 3)
E[‖z− z(K)‖2]− µ

2
E[‖z− z(K)‖2]

+
8(B2 +M2)

(K + 3)µ
(80)

where ẑ
∆
= 1∑K

k=1(k+k0−1)
(k + k0 − 1)z(k) and µ ∆

= µ1 + µ2

Proof. Fix z ∈ Z . At each iteration k, the projected gradient update (6) in Algorithm 2 can be
rewritten as

z(k) = argmin
z∈Z

{〈ζ(k), z− z(k−1)〉+
1

2γ(k)
‖z− z(k−1)‖2}.

Since the objective function is 1
γ(k) -convex, by Lemma 5, we have

〈ζ(k), z(k) − z(k−1)〉+
1

2γ(k)
‖z(k) − z(k−1)‖2

≤〈ζ(k), z− z(k−1)〉+
1

2γ(k)
‖z− z(k−1)‖2 − 1

2γ(k)
‖z− z(k)‖2

Since ζ(k) is an unbiased stochastic subgradient of φ(z) at z = z(k−1) and φ̈(z) is a deterministic
function, we have E[ζ(k)] = d +∇φ̈(z(k−1)) for some d ∈ ∂φ̇(z(k−1)).

Adding φ(z(k−1))+〈d+∇φ̈(z(k−1))−ζ(k), z(k)−z(k−1)〉+ L
2 ‖z

(k)−z(k−1)‖2+M‖z(k)−z(k−1)‖
on both sides and rearranging terms yields

φ(z(k−1)) + 〈d +∇φ̈(z(k−1)), z(k) − z(k−1)〉+
L

2
‖z(k) − z(k−1)‖2 +M‖z(k) − z(k−1)‖

≤φ(z(k−1)) + 〈ζ(k), z− z(k−1)〉+
1

2γ(k)
‖z− z(k−1)‖2 − 1

2γ(k)
‖z− z(k)‖2

− 1

2
(

1

γ(k)
− L)‖z(k) − z(k−1)‖2 +M‖z(k) − z(k−1)‖+ 〈E[ζ(k)]− ζ(k), z(k) − z(k−1)〉 (81)

Since φ̈(·) is L-smooth, by the descent lemma, e.g., Proposition A.24 in [2], we have

φ̈(z(k)) ≤ φ̈(z(k−1)) + 〈∇φ̈(z(k−1)), z(k) − z(k−1)〉+
L

2
‖z(k) − z(k−1)‖2 (82)

By Young’s inequality, for any η(k) > 0, we have

〈E[ζ(k)]− ζ(k), z(k) − z(k−1)〉 ≤ 1

2η(k)
‖E[ζ(k)]− ζ(k)‖2 +

η(k)

2
‖z(k) − z(k−1)‖2 (83)

Substituting (79), (82) and (83) into (81) and recalling that φ(z(k)) = φ̇(z(k)) + φ̈(z(k)) yields

φ(z(k)) ≤φ(z(k−1)) + 〈ζ(k), z− z(k−1)〉+
1

2γ(k)
‖z− z(k−1)‖2 − 1

2γ(k)
‖z− z(k)‖2

− 1

2
(

1

γ(k)
− L− η(k))‖z(k) − z(k−1)‖2 +M‖z(k) − z(k−1)‖+

1

2η(k)
‖E[ζ(k)]− ζ(k)‖2

(84)

Recall that L = µ2 and µ = µ1 + µ2. If we take γ(k) = 2
µ(k+k0) with k0 = 2, η(k) = µ

4 k, then
1
γ(k) − L− η(k) = µ

4 k + µ1 ≥ µ
4 k. Thus, we have

− 1

2
(

1

γ(k)
− L− η(k))‖z(k) − z(k−1)‖2 +M‖z(k) − z(k−1)‖

=− µ

8
k‖z(k) − z(k−1)‖2 +M‖z(k) − z(k−1)‖

(a)

≤ 2M2

kµ
(85)

32

where (a) follows from the basic inequality −au2 + bu ≤ b2/(4a) for any a < 0 and u ∈ R.

Substituting (85) into (84) yields

φ(z(k)) ≤φ(z(k−1)) + 〈ζ(k), z− z(k−1)〉+
1

2γ(k)
‖z− z(k−1)‖2 − 1

2γ(k)
‖z− z(k)‖2 +

2M2

kµ

+
1

2η(k)
‖E[ζ(k)]− ζ(k)‖2 (86)

For any fixed z, since ζ(k) is an unbiased i.i.d. stochastic subgradient and z(k−1) is determined by
ζ(0), . . . , ζ(k−1), we have

E[〈ζ(k), z− z(k−1)〉] = E[E[〈ζ(k), z− z(k−1)〉|ζ[0:k−1]]] = E[〈d +∇φ̈(z(k−1)), z− z(k−1)〉]
(87)

By the basic probability fact, we have

E[‖E[ζ(k)]− ζ(k)‖2] ≤ E[‖ζ(k)‖2] ≤ B2 (88)

By the µ-convexity of φ(·), we have

φ(z(k−1)) + 〈d +∇φ̈(z(k−1)), z− z(k−1)〉 ≤ φ(z)− µ

2
‖z− z(k−1)‖2 (89)

Taking expectations on both sides of (86) and substituting (87)-(89) into it yields

E[φ(z(k))] ≤φ(z) +
1

2
(

1

γ(k)
− µ)E[‖z− z(k−1)‖2]− 1

2

1

γ(k)
E[‖z− z(k)‖2] +

2M2

kµ
+

1

2η(k)
B2

=φ(z) +
µ

4
(k + k0 − 2)E[‖z− z(k−1)‖2]− µ

4
(k + k0)E[‖z− z(k)‖2] +

2(B2 +M2)

kµ
(90)

Multiplying both sides by k + k0 − 1 yields

(k + k0 − 1)E[φ(z(k))]

≤(k + k0 − 1)φ(z) +
µ

4
(k + k0 − 2)(k + k0 − 1)E[‖z− z(k−1)‖2]

− µ

4
(k + k0 − 1)(k + k0)E[‖z− z(k)‖2] +

k + k0 − 1

kµ
(2(B2 +M2))

(a)

≤ (k + k0 − 1)φ(z) +
µ

4
(k + k0 − 2)(k + k0 − 1)E[‖z− z(k−1)‖2]

− µ

4
(k + k0 − 1)(k + k0)E[‖z− z(k)‖2] +

4(B2 +M2)

µ

where (a) follows by recalling k0 = 2. Summing over k ∈ {1, 2, . . . ,K} and dividing both sides by∑K
k=1(k + k0 − 1) yields

E[
1∑K

k=1(k + k0 − 1)

K∑
k=1

(k + k0 − 1)φ(z(k))]

≤φ(z) +
µ(k2

0 − k0)

2K(K + 2k0 − 1)
E[‖z− z(0)‖2]− µ(k2

0 − k0)

2K(K + 2k0 − 1)
E[‖z− z(K)‖2]− µ

2
E[‖z− z(K)‖2]

+
8(B2 +M2)

(K + 2k0 − 1)µ

Define ẑ
∆
= 1∑K

k=1(k+k0−1)
(k + k0 − 1)z(k). By Jensen’s inequality and recalling k0 = 2, we have

E[φ(ẑ)]

≤φ(z) +
µ

K(K + 3)
E[‖z− z(0)‖2]− µ

K(K + 3)
E[‖z− z(K)‖2]− µ

2
E[‖z− z(K)‖2] +

8(B2 +M2)

(K + 3)µ

33

Lemma 15. Consider convex program (1) with µ-convex stochastic objective functions under As-
sumption 4. Let x∗ be any optimal solution. If ν(t) > 0 and ρ(t) > 0 in Algorithm 1 are chosen to
satisfy

ν(t) ≥ ρ(t)‖A‖2,∀t,

and the sub-procedure STO-LOCAL (Algorithm 2) uses k0 = 2 and ẑ defined in Lemma 14 as the
output, then, for all T ≥ 1, Algorithm 1 ensures

T∑
t=1

E[ρ(t)f(x(t))] ≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Φ(t)]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

8ρ(t)(B2 +M2)

(ν(t) + µ)(K(t) + 3)

where

Φ(t) ∆
=

(
ν(t) +

2(ν(t) + µ)

Kt(Kt + 3)

)
‖x∗ − y(t−1)‖2 −

(
ν(t) + µ+

2(ν(t) + µ)

Kt(Kt + 3)

)
‖x∗ − y(t)‖2

(91)

and B and M are constants defined in Assumption 4.

Proof. Fix t ∈ {1, 2, . . . , T}. Define φ(t)(x) =
∑N
i=1 φ

(t)
i (xi). Note that if we define

φ̇(t)(x) = f(x) and φ̈t(x) = ρ(t)〈rt−1 + 1
ρ(t)

λ(t−1),Ax − b〉 + ν(t)

2 ‖x − y(t−1)‖2, then

φ(t)(x) = φ̇(t)(x) + φ̈t(x) where φ̇(t)(x) is µ-convex and satisfies (79) by Assumption 4 and
φ̈(t)(x) is ν(t)-convex and ν(t)-smooth. As in the observation in the proof of Lemma 11 or
Lemma 13 , each iteration of Algorithm 1 is to jointly update x and y via the sub-procedure
(x(t),y(t)) = STO-LOCAL(φ(t)(·),X ,y(t−1),K(t)).

Thus, by Lemma 14, we have

E[φ(t)(x(t))] ≤φ(t)(x∗) +
(ν(t) + µ)

K(K + 3)
E[‖z− z(0)‖2]− (ν(t) + µ)

K(K + 3)
E[‖z− z(K)‖2]

− (ν(t) + µ)

2
E[‖z− z(K)‖2] +

8(B2 +M2)

(K + 3)(ν(t) + µ)

This is almost identical to (62) (with k0 = 2) in Lemma 13 except the constant σ2 is replaced by
2(B2 +M2).

Following the same lines (after (62)) in the proof of Lemma 13, we can show

T∑
t=1

E[ρ(t)f(x(t))] ≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Φ(t)]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

8ρ(t)(B2 +M2)

(ν(t) + µ)(K(t) + 3)

where Φ(t) ∆
=
(
ν(t) + 2(ν(t)+µ)

Kt(Kt+3)

)
‖x∗ − y(t−1)‖2 −

(
ν(t) + µ+ 2(ν(t)+µ)

Kt(Kt+3)

)
‖x∗ − y(t)‖2.

Since the conclusion from Lemma 15 is quite similar to that from Lemma 13 (with k0 = 2) with
the minor distinction that constant σ2 is replaced by 2(B2 +M2), the main proof of Theorem 4 is
similar to the proof of µ > 0 case of Theorem 2.

Main Proof of Theorem 4: Note that our selection of ρ(t) = tρ, ν(t) = tρ‖A‖2 and k0 = 2 satisfies
the conditions in Lemma 15. By Lemma 15, we have

T∑
t=1

E[ρ(t)f(x(t))] ≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2

T∑
t=1

E[ρ(t)Φ(t)]− 1

2
E[‖λ(T)‖2] +

T∑
t=1

8ρ(t)(B2 +M2)

(ν(t) + µ)(K(t) + 3)

(92)

34

Recalling the definition of Φt in (91) and K(t) = 3t, we have

T∑
t=1

ρ(t)Φ(t)

=ρ

(
ρ‖A‖2 +

(ρ‖A‖2 + µ)

18

)
‖x∗ − y(0)‖2

−
T−1∑
t=1

(
ρ
(
ρt2‖A‖2 + tµ− ρ(t+ 1)2‖A‖2

)
+ ρ
(ρt‖A‖2 + µ

t+ 1
− ρ(t+ 1)‖A‖2 + µ

t+ 2

)2

9

)
‖x∗ − y(t)‖2

− Tρ
(
Tρ‖A‖2 + µ+

(ρT‖A‖2 + µ

T (T + 1)

)2

9

)
‖x∗ − yT ‖2

(a)

≤ρ
(
ρ‖A‖2 +

2(ρ‖A‖2 + µ)

18

)
‖x∗ − y(0)‖2 (93)

where (a) follows by ignoring the last negative term and noting that ρt2‖A‖2 +tµ−ρ(t+1)2‖A‖2 =
tµ − ρ(2t + 1)‖A‖2 ≥ µ(t − 2t+1

3) ≥ 0 for all t ≥ 1, where the first inequality uses ρ ≤ µ
3‖A‖2 ;

and ρt‖A‖2+µ
t+1 − ρ(t+1)‖A‖2+µ

t+2 = µ−ρ‖A‖2
(t+1)(t+2) ≥ 0, where the inequality also uses ρ ≤ µ

3‖A‖2 .

We also note that
T∑
t=1

8ρ(t)(B2 +M2)

(ν(t) + µ)(K(t) + 3)
=

8ρ(B2 +M2)

3

T∑
t=1

t

(ρt‖A‖2 + µ)(t+ 1)

(a)

≤ 8ρ(B2 +M2)

3

T∑
t=1

t

(t+ 1)(t+ 3)‖A‖2

≤8ρ(B2 +M2)

3‖A‖2
T∑
t=1

1

t+ 1

≤8ρ(B2 +M2)

3‖A‖2
log(T + 1) (94)

where (a) follows because µ ≥ 3ρ‖A‖2 by ρ ≤ µ
3‖A‖2 .

Substituting (93) and (94) into (92) yields

T∑
t=1

E[ρ(t)f(x(t))]

≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2
ρ

(
ρ‖A‖2 +

2(ρ‖A‖2 + µ)

18

)
‖x∗ − y(0)‖2 − 1

2
E[‖λ(T)‖2]

+
8ρ(B2 +M2)

‖A‖2
log(T + 1)

(a)

≤
T∑
t=1

E[ρ(t)f(x∗)] +
1

2
ρc1‖x∗ − y(0)‖2 − 1

2
E[‖λ(T)‖2] +

1

2
c2 log(T + 1) (95)

where (a) follows because c1 = ρ‖A‖2 + 2(ρ‖A‖2+µ)
18 and c2 = 16ρ(B2+M2)

3‖A‖2 .

Ignoring the negative term − 1
2E[‖λ(T)‖2], dividing both sides by

∑T
t=1 ρ

(t) and applying Jensen’s
inequality yields

E[f(xT)] ≤f(x∗) +
1

2
∑T
t=1 ρ

(t)

(
ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

)
(a)
=f(x∗) +

1

T (T + 1)

(
c1‖x∗ − y(0)‖2 +

c2
ρ

log(T + 1)

)

35

where (a) follows because
∑T
t=1 ρ

(t) = ρ
∑T
t=1 t = ρT (T+1)

2 . This is (77) of our theorem.

By Lemma 4 (after taking expectations on both sides), we have

E[

T∑
t=1

ρ(t)f(x(t))] ≥
T∑
t=1

E[ρ(t)f(x∗)]− ‖λ∗‖E[‖λ(T)‖]

Combining this inequality with (75) and cancelling the common terms yields

E[‖λ(T)‖2] ≤ 2‖λ∗‖E[‖λ(T)‖] + ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

Since
(
E[‖λ(T)‖]

)2

≤ E[‖λ(T)‖2], we further have(
E[‖λ(T)‖]

)2

≤ 2‖λ∗‖E[‖λ(T)‖] + ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

This quadratic inequality can be rewritten as(
E[‖λ(T)‖]− ‖λ∗‖

)2

≤ ‖λ∗‖2 + ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

Thus, we have

E[‖λ(T)‖] ≤‖λ∗‖+
√
‖λ∗‖2 + ρc1‖x∗ − y(0)‖2 + c2 log(T + 1)

≤2‖λ∗‖+
√
ρc1‖x∗ − y(0)‖+

√
c2 log(T + 1) (96)

By part (1) of Lemma 3 (with ρ(t) = ρ), we have

T∑
t=1

ρ
(
Ax(t) − b

)
= λ(T)

Dividing both sides by
∑T
t=1 ρ

(t) = ρT (T+1)
2 , taking the vector l2 norm and then taking expectations

on both sides yields

E[‖Ax(T) − b‖] =
2

T (T + 1)
E[‖λ(T)‖]

(a)

≤ 2

T (T + 1)

(
4‖λ∗‖
ρ

+

√
c1√
ρ
‖x∗ − y(0)‖+

√
c2 log(T + 1)

ρ

)
where (a) follows from (76). This is (78) of our theorem.

36

	Introduction
	Formulation and New Algorithm
	Basic Facts of Algorithm 2

	Performance Analysis of Algorithm 1
	General objective functions (possibly non-smooth non-strongly convex)
	Smooth objective functions
	Non-smooth strongly convex objective functions

	Experiments
	Distributed Stochastic Optimization with Noisy Stochastic Gradient Information
	Distributed l1 Regularized Logistic Regression

	Conclusions
	Supplement
	Connection between Algorithm 1 and Existing ADMMs
	Analysis Technique in This Paper
	Basic Facts from Lagrange Multiplier Updates
	New Facts on Convex Analysis
	Proof of Theorem 3
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Performance of Algorithm 1 for strongly convex non-smooth problems

