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1.OCO AND ZINKEVICH’S OGD
Online Convex Optimization (OCO) is a multi-round process of
making decisions without knowing what to optimize

• An arbitrary sequence of convex loss functions
f1(x), f2(x), . . . , f t(x), . . . for each round.

• At each round t, choose x(t) ∈ X without knowing f t(x)
based only on previous fτ (·), τ < t.

Zinkevich’s online gradient descent (OGD) chooses

x(t+ 1) = PX
[
x(t)− γ∇f t(x(t))

]
.

OCO performance metric: regret is accumulate loss difference be-
tween an algorithm and the optimal fixed decision in hindsight

regret(T ) =
T∑
t=1

f t(x(t))−min
x∈X

T∑
t=1

f t(x)

Zinkevich’s OGD achieves O(
√
T ) regret which is best possible

without strong convexity.

2.OCO WITH STOCHASTIC CONSTRAINTS
Zinkevich’s OGD is Optimistic:

• Existing OCO assumes full knowledge of setX and low com-
plexity of PX [·].
• Even if X is perfectly known, PX [·] involved in Zinkevich’s

OGD is too expensive to compute for complicatedX , e.g.,X =
{x ∈ X0 : gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}}.

We generalizes the conventional OCO to the setup with (i.i.d.) on-
line functional constraints.

Consider stochastic X given by

X = {x ∈ X0 : E[gk(x;ω)] ≤ 0,∀k ∈ {1, 2, . . . ,m}}

where X0 is a simple known set and ω is i.i.d. from an un-
known distribution. At each round t, the decision maker re-
ceives i.i.d. realizations gtk(x) = gk(x;ω(t)) that are disclosed
at round t+ 1 after x(t) ∈ X0 is chosen.

Our Goal/Contribution:

• Avoid projection onto X and only use PX0
[·] (X0 is simple).

• Solve online constraints, knowing each gtk(x) after t+ 1.
• Achieve O(

√
T ) regret and O(

√
T ) constraint violations.

3. OUR NEW ALGORITHM
• Parameter: External: V > 0 and α > 0; Internal: introduce virtual queue Qk(t) for each stochastic constraint.

• Initialization: Set x(1) ∈ X0 arbitrarily and Qk(1) = 0,∀k.

• At the end of each round t = 1, 2, . . ., observe f t(x) and each gtk(x) and update for the next round t+ 1 as follows:

– Output x(t+ 1), decision for round t+ 1, via

x(t+ 1) = PX0

[
x(t)− 1

2αd(t)
]

where d(t) = V∇f t(x(t)) +
∑m
k=1Qk(t)∇gtk(x).

– Update each internal parameter Qk(t+ 1) via

Qk(t+ 1) = max
{
0, Qk(t) + gtk(x(t)) + [∇gtk(x(t))]T[x(t+ 1)− x(t)]

}

5. SPECIAL CASE PROBLEMS
• OCO with long term constraints [Mahdavi’12JMLR] [Cot-

ter’15COLT] [Jenatton’16ICML]

– gk(x;ω) ≡ gk(x),∀k.
– Existing: O(Tmax{β,1−β}) regret and O(T 1−β/2) constraint vi-

olations with β ∈ (0, 1).
– Our alg: O(

√
T ) regret and O(

√
T ) constraint violations

• Stochastic constrained convex opt [Mahdavi’13NIPS][Lan’16]:

– f t(x) i.i.d. generated (not arbitrarily time-varying).
– Existing: offline (batch) solutions: high prob guarantee [Mah-

davi’13NIPS] or expectation guarantee for problems with a
single stochastic constraint [Lan’16].

– Our alg: online and solve arbitrary # of stochastic constraints

• Deterministic constrained convex opt [Nedich’09JOTA]

– f t(x) ≡ f(x) and gk(x;ω) ≡ gk(x),∀k.
– Our alg is purely subgradient based and can solve non-

smooth non-strongly-convex problems. Tied with other algs
with the best convergence rates.

4. PERFORMANCE GUARANTEES
Let x∗ = X be the optimal fixed solution in hindsight.

If we choose V =
√
T and α = T in our algorithm, then

Expected Performance

• Regret: E[
∑T
t=1 f

t(x(t)) ≤ E[
∑T
t=1 f

t(x∗)] +O(
√
T ).

• Constraint: E[
∑T
t=1 g

t
k(x(t))] ≤ O(

√
T ),∀k

High Prob Performance

For any 0 < λ < 1, we have

• Pr[
∑T
t=1 f

t(x(t)) ≤
∑T
t=1 f

t(x∗)+O(
√
T log(T ) log1.5( 1

λ
)] ≥ 1−λ

• Pr[
∑T
t=1 g

t
k(x(t))] ≤ O(

√
T log(T ) log( 1λ ))] ≥ 1− λ, ∀k

6. EXP: JOB SCHEDULING IN GEO-DISTRIBUTED DATA CENTERS

• 100 servers clustered at
10 zones

• electricity prices vary
across zones and time

• schedule online job ar-
rivals

• serve all jobs and mini-
mize electricity cost


