Ming Hsieh Department of Electrical Engineering

1.0CO AND ZINKEVICH'S OGD

Online Convex Optimization (OCO) is a multi-round making decisions without knowing what to optimize

- An arbitrary sequence of convex loss $f^1(\mathbf{x}), f^2(\mathbf{x}), \dots, f^t(\mathbf{x}), \dots$ for each round.
- At each round t, choose $\mathbf{x}(t) \in \mathcal{X}$ without known based only on previous $f^{\tau}(\cdot), \tau < t$.

Zinkevich's online gradient descent (OGD) chooses

$$\mathbf{x}(t+1) = \mathcal{P}_{\mathcal{X}} \left[\mathbf{x}(t) - \gamma \nabla f^{t}(\mathbf{x}(t)) \right].$$

OCO performance metric: regret is accumulate loss di tween an algorithm and the optimal fixed decision in hi

$$\operatorname{regret}(T) = \sum_{t=1}^{I} f^{t}(\mathbf{x}(t)) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{I} f^{t}(\mathbf{x})$$

Zinkevich's OGD achieves $O(\sqrt{T})$ regret which is be without strong convexity.

2.0CO WITH STOCHASTIC CONSTRA

Zinkevich's OGD is Optimistic:

- Existing OCO assumes full knowledge of set X ar plexity of $\mathcal{P}_{\mathcal{X}}|\cdot|$.
- Even if \mathcal{X} is perfectly known, $\mathcal{P}_{\mathcal{X}}[\cdot]$ involved in OGD is too expensive to compute for complicated $\{\mathbf{x} \in \mathcal{X}_0 : g_k(\mathbf{x}) \le 0, \forall k \in \{1, 2, \dots, m\}\}.$

We generalizes the conventional OCO to the setup with line functional constraints.

Consider stochastic \mathcal{X} given by

 $\mathcal{X} = \{ \mathbf{x} \in \mathcal{X}_0 : \mathbb{E}[g_k(\mathbf{x}; \omega)] \le 0, \forall k \in \{1, 2, \dots, n\} \}$

where \mathcal{X}_0 is a simple known set and ω is i.i.d. from known distribution. At each round t, the decision r ceives i.i.d. realizations $g_k^t(\mathbf{x}) = g_k(\mathbf{x}; \omega(t))$ that are d at round t + 1 after $\mathbf{x}(t) \in \mathcal{X}_0$ is chosen.

Our Goal/Contribution:

- Avoid projection onto \mathcal{X} and only use $\mathcal{P}_{\mathcal{X}_0}[\cdot]$ (\mathcal{X}_0 is
- Solve online constraints, knowing each $g_k^t(\mathbf{x})$ after
- Achieve $O(\sqrt{T})$ regret and $O(\sqrt{T})$ constraint violations.

ONLINE CONVEX OPTIMIZATION WITH STOCHASTIC CONSTRAINTS HAO YU, MICHAEL NEELY, XIAOHAN WEI } UNIVERSITY OF SOUTHERN CALIFORNIA

	3. OUR NEW ALGORITHM
d process of	• Parameter: External: $V > 0$ and $\alpha >$
functions	• Initialization: Set $\mathbf{x}(1) \in \mathcal{X}_0$ arbitrary
	• At the end of each round $t = 1, 2,$
owing $f^t(\mathbf{x})$	– Output $\mathbf{x}(t+1)$, decision for re-
	$\mathbf{x}(t+1) = \mathcal{P}_{\mathcal{X}_0} \left[\mathbf{x}(t) - \frac{1}{2\alpha} \mathbf{d}(t) \right]$
	 Update each internal paramete
ifference be-	$Q_k(t+1) = \max\left\{0, Q_k(t) - \right\}$
indsight	
	4. PERFORMANCE GUARAN
est possible	Let $\mathbf{x}^* = \mathcal{X}$ be the optimal fixed solution i
L	If we choose $V = \sqrt{T}$ and $\alpha = T$ in our al
	Expected Performance
AINIS	• Regret: $\mathbb{E}\left[\sum_{t=1}^{T} f^{t}(\mathbf{x}(t)) \le \mathbb{E}\left[\sum_{t=1}^{T} f^{t}(\mathbf{x}(t))\right]\right]$
nd low com-	• Constraint: $\mathbb{E}\left[\sum_{t=1}^{T} g_k^t(\mathbf{x}(t))\right] \le O(\sqrt{2})$
Zinkevich's	High Prob Performance
\mathcal{X} , e.g., $\mathcal{X} =$	For any $0 < \lambda < 1$, we have
h(iid) on-	• $\Pr[\sum_{t=1}^{T} f^{t}(\mathbf{x}(t)) \leq \sum_{t=1}^{T} f^{t}(\mathbf{x}^{*}) + O(\sqrt{T})]$
	• $\Pr\left[\sum_{t=1}^{T} g_k^t(\mathbf{x}(t))\right] \le O(\sqrt{T}\log(T)\log(T))$
n}}	
m an un- naker <mark>re-</mark>	6. Exp: Job Scheduling in
disclosed	• 100 servers clustered at
	 electricity prices vary Job arrivals
	 across zones and time schedule online job ar-
s simple). r $t + 1$.	rivals
ations.	 serve all jobs and mini- mize electricity cost

> 0; Internal: introduce virtual queue $Q_k(t)$ for each stochastic constraint. arily and $Q_k(1) = 0, \forall k$.

., observe $f^t(\mathbf{x})$ and each $g_k^t(\mathbf{x})$ and update for the next round t+1 as follows:

round t + 1, via

where $\mathbf{d}(t) = V \nabla f^t(\mathbf{x}(t)) + \sum_{k=1}^m Q_k(t) \nabla g_k^t(\mathbf{x}).$

 $\operatorname{er} Q_k(t+1)$ via

 $+ g_k^t(\mathbf{x}(t)) + [\nabla g_k^t(\mathbf{x}(t))]^{\mathsf{T}}[\mathbf{x}(t+1) - \mathbf{x}(t)] \}$

OCO with long term constraints [Mahdavi'12JMLR] [Cot-

- Existing: $O(T^{\max\{\beta,1-\beta\}})$ regret and $O(T^{1-\beta/2})$ constraint vi-

– Our alg: $O(\sqrt{T})$ regret and $O(\sqrt{T})$ constraint violations

Stochastic constrained convex opt [Mahdavi'13NIPS][Lan'16]:

- $f^t(\mathbf{x})$ i.i.d. generated (not arbitrarily time-varying).

– Existing: offline (batch) solutions: high prob guarantee [Mahdavi'13NIPS] or expectation guarantee for problems with a

Our alg: online and solve arbitrary # of stochastic constraints

- Our alg is purely subgradient based and can solve nonsmooth non-strongly-convex problems. Tied with other algs