
PROC. IEEE INFOCOM 2017

A New Backpressure Algorithm for Joint Rate
Control and Routing with Vanishing Utility
Optimality Gaps and Finite Queue Lengths

Hao Yu and Michael J. Neely
University of Southern California

Abstract—The backpressure algorithm has been widely used
as a distributed solution to the problem of joint rate control and
routing in multi-hop data networks. By controlling a parameter
V in the algorithm, the backpressure algorithm can achieve
an arbitrarily small utility optimality gap. However, this in
turn brings in a large queue length at each node and hence
causes large network delay. This phenomenon is known as
the fundamental utility-delay tradeoff. The best known utility-
delay tradeoff for general networks is [O(1/V), O(V)] and is
attained by a backpressure algorithm based on a drift-plus-
penalty technique. This may suggest that to achieve an arbitrarily
small utility optimality gap, the existing backpressure algorithms
necessarily yield an arbitrarily large queue length. However,
this paper proposes a new backpressure algorithm that has a
vanishing utility optimality gap, so utility converges to exact
optimality as the algorithm keeps running, while queue lengths
are bounded throughout by a finite constant. The technique uses
backpressure and drift concepts with a new method for convex
programming.

I. INTRODUCTION

In multi-hop data networks, the problem of joint rate control
and routing is to accept data into the network and to make
routing decisions at each node such that certain utilities are
maximized and all accepted data are delivered to intended
destinations without overflowing any queue in intermediate
nodes. The original backpressure algorithm proposed in the
seminal work [1] by Tassiulas and Ephremides addresses this
problem by assuming that incoming data are given and are
inside the network stability region and develops a routing
strategy to deliver all incoming data without overflowing any
queue. In the context of [1], there is essentially no utility
maximization consideration in the network. The backpressure
algorithm is further extended by a drift-plus-penalty technique
to deal with data network with both utility maximization and
queue stability considerations [2], [3], [4]. Alternative exten-
sions for both utility maximization and queue stabilization
are developed in [5], [6], [7], [8]. The above extended back-
pressure algorithms have different dynamics and/or may yield
different utility-delay tradeoff results. However, all of them
rely on “backpressure” quantities, which are the differential
backlogs between neighboring nodes.

It has been observed in [9], [5], [7], [10] that the drift-plus-
penalty and other alternative algorithms can be interpreted

Hao Yu and Michael J. Neely are with the Department of Electrical
Engineering, University of Southern California, Los Angeles, USA.

as first order Lagrangian dual type methods for constrained
optimization. In addition, these backpressure algorithms follow
certain fundamental utility-delay tradeoffs. For instance, the
primal-dual type backpressure algorithm in [5] achieves an
O(1/V) utility optimality gap with an O(V 2) queue length,
where V is an algorithm parameter. By controlling parameter
V , a small utility optimality gap is available only at the cost
of a large queue length. The drift-plus-penalty backpressure
algorithm [4], which has the best utility-delay tradeoff among
all existing first order Lagrangian dual type methods for gen-
eral networks, can only achieve an O(1/V) utility optimality
gap with an O(V) queue length. Under certain restrictive
assumptions over the network, a better [O(1/V), O(log(V))]
tradeoff is achieved via an exponential Lyapunov function in
[11], and an [O(1/V), O(log2(V))] tradeoff is achieved via
a LIFO-backpressure algorithm in [12]. The existing utility-
delay tradeoff results seem to suggest that a larger queueing
delay is unavoidable if a smaller utility optimality gap is
demanded.

Recently, there have been many attempts in obtaining new
variations of backpressure algorithms by applying Newton’s
method to the Lagrangian dual function. In the recent work
[10], the authors develop a Newton’s method for joint rate
control and routing. However, the utility-delay tradeoff in
[10] is still [O(1/V), O(V 2)]; and the algorithm requires a
centralized projection step (although Newton directions can be
approximated in a distributed manner). Work [13] considers a
network flow control problem where the path of each flow is
given (and hence there is no routing part in the problem), and
proposes a decentralized Newton based algorithm for rate con-
trol. Work [14] considers network routing without an end-to-
end utility and only shows the stability of the proposed Newton
based backpressure algorithm. All of the above Netwon’s
method based algorithms rely on distributed approximations
for the inverse of Hessians, whose computations still require
certain coordinations for the local information updates and
propagations and do not scale well with the network size. In
contrast, the first order Lagrangian dual type methods do not
need global network topology information. Rather, each node
only needs the queue length information of its neighbors.

This paper proposes a new first order Lagrangian dual
type backpressure algorithm that is as simple as the existing
algorithms in [4], [5], [7] but has a better utility-delay tradeoff.

PROC. IEEE INFOCOM 2017

The new backpressue algorithm achieves a vanishing utility
optimality gap that decays like O(1/t), where t is the number
of iterations. It also guarantees that the queue length at each
node is always bounded by a fixed constant of the same order
as the optimal Lagrange multiplier of the network optimization
problem. This improves on the utility-delay tradeoffs of prior
work. In particular, it improves the [O(1/V), O(V 2)] utility-
delay tradeoff in [5] and the [O(1/V), O(V)] utility-delay
tradeoff of the drift-plus-penalty algorithm in [4], both of
which yield an unbounded queue length to have a vanishing
utility optimality gap. The new backpressure algorithm dif-
fers from existing first order backpressure algorithms in the
following aspects:

1) The “backpressure” quantities in this paper are with
respect to newly introduced weights. These are different
from queues used in other backpressure algorithms, but
can still be locally tracked and updated.

2) The rate control and routing decision rule involves a
quadratic term that is similar to a term used in proximal
algorithms [15].

Note that the benefit of introducing a quadratic term in
network optimization has been observed in [16]. Work [16]
considers network utility maximization with given routing
paths that is a special case of the problem treated in this paper.
The algorithm of [16] considers a fixed set of predetermined
paths for each session and does not scale well when treating
all (typically exponentially many) possible paths of a general
network. The algorithm proposed in [16] is not a backpressure
type and hence is fundamentally different from ours. For
example, the algorithm in [16] needs to update the primal
variables (source session rates for each path) at least twice per
iteration, while our algorithm only updates the primal variables
(source session rates and link session rates) once per iteration.
The prior work [16] shows that the utility optimality gap is
asymptotically zero without analyzing the decay rate, while
this paper shows the utility optimality gap decays like O(1/t).

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a slotted data network with normalized time slots
t ∈ {0, 1, 2, . . .}. This network is represented by a graph
G = (N ,L), where N is the set of nodes and L ⊆ N × N
is the set of directed links. Let |N | and |L| be the respective
cardinalities of N and L. This network is shared by F end-to-
end sessions denoted by a set F . For each end-to-end session
f ∈ F , the source node Src(f) and destination node Dst(f)
are given but the routes are not specified. Each session f
has a continuous and concave utility function Uf (xf) that
represents the “satisfaction” received by accepting xf amount
of data for session f into the network at each slot. Unlike
[5], [10] where Uf (·) is assumed to be differentiable and
strongly concave, this paper considers general concave utility
functions Uf (·), including those that are neither differentiable
nor strongly concave. Formally, each utility function Uf is
defined over an interval dom(Uf), called the domain of the
function. It is assumed throughout that either dom(Uf) =
[0,∞) or dom(Uf) = (0,∞), the latter being important for

proportionally fair utilities [17] Uf (x) = log(x) that have
singularities at x = 0 .

Denote the capacity of link l as Cl and assume it is a
fixed and positive constant.1 Define µ

(f)
l as the amount of

session f ’s data routed at link l that is to be determined by our
algorithm. Note that in general, the network may be configured
such that some session f is forbidden to use link l. For each
link l, define Sl ⊆ F as the set of sessions that are allowed
to use link l. The case of unrestricted routing is treated by
defining Sl = F for all links l.

Note that if l = (n,m) with n,m ∈ N , then µ
(f)
l and

Cl can also be respectively written as µ
(f)
(n,m) and C(n,m).

For each node n ∈ N , denote the sets of its incoming
links and outgoing links as I(n) and O(n), respectively.
Note that xf ,∀f ∈ F and µ

(f)
l ,∀l ∈ L,∀f ∈ F are the

decision variables of a joint rate control and routing algorithm.
If the global network topology information is available, the
optimal joint rate control and routing can be formulated as
the following multi-commodity network flow problem:

max
xf ,µ

(f)
l

∑
f∈F

Uf (xf) (1)

s.t. xf1{n=Src(f)} +
∑
l∈I(n)

µ
(f)
l ≤

∑
l∈O(n)

µ
(f)
l

∀f ∈ F ,∀n ∈ N \ {Dst(f)} (2)∑
f∈F

µ
(f)
l ≤ Cl,∀l ∈ L, (3)

µ
(f)
l ≥ 0,∀l ∈ L,∀f ∈ Sl, (4)

µ
(f)
l = 0,∀l ∈ L,∀f ∈ F \ Sl, (5)
xf ∈ dom(Uf),∀f ∈ F (6)

where 1{·} is an indicator function; (2) represents the node
flow conservation constraints relaxed by replacing the equal-
ities with inequalities, meaning that the total rate of flow f
into node n is less than or equal to the total rate of flow f
out of the node (since, in principle, we can always send fake
data for departure links when the inequality is loose); and (3)
represents link capacity constraints. Note that for each flow f ,
there is no constraint (2) at its destination node Dst(f) since
all incoming data are consumed by this node.

The above formulation includes network utility maximiza-
tion with fixed paths as special cases. In the case when each
session only has one single given path, e.g., the network utility
maximization problem considered in [18], we could modify
the sets Sl used in constraints (4) and (5) to reflect this fact.
For example, if link l1 is only used for sessions f1 and f2,
then Sl1 = {f1, f2}. Similarly, the case [16] where each flow
is restricted to using links from a set of predefined paths can
be treated by modifying the sets Sl accordingly.

The solution to problem (1)-(6) corresponds to the optimal
joint rate control and routing. However, to solve this convex
program at a single computer, we need to know the global

1As stated in [10], this is a suitable model for wireline networks and
wireless networks with fixed transmission power and orthogonal channels.

PROC. IEEE INFOCOM 2017

network topology and the solution is a centralized one, which
is not practical for large data networks. As observed in [9],
[5], [7], [10], various versions of backpressure algorithms can
be interpreted as distributed solutions to problem (1)-(6) from
first order Lagrangian dual type methods.

Assumption 1: (Feasibility) Problem (1)-(6) has at least one
optimal solution vector [x∗f ;µ

(f),∗
l]f∈F,l∈L.

Assumption 2: (Existence of Lagrange multipliers) As-
sume the convex program (1)-(6) has Lagrange multipliers
attaining the strong duality. Specifically, define convex set
C = {[x∗f ;µ

(f),∗
l]f∈F,l∈L : (3)-(6) hold}. Assume there exists

a Lagrange multiplier vector λ∗ = [λ
(f),∗
n]f∈F,n∈N\{Dst(f)} ≥

0 such that

q(λ∗) = sup{(1) : (2)-(6)}

where q(λ) = sup
[xf ;µ

(f)
l]∈C

{∑
f∈F Uf (xf) −∑

f∈F
∑
n∈N\{Dst(f)} λ

(f)
n

[
xf1{n=Src(f)} +

∑
l∈I(n) µ

(f)
l −∑

l∈O(n) µ
(f)
l

]}
is the Lagrangian dual function of problem

(1)-(6) by treating (3)-(6) as a convex set constraint.
Assumptions 1 and 2 hold in most cases of interest. For

example, Slater’s condition ensures Assumption 2. Since con-
straints (2)-(6) are linear, Proposition 6.4.2 in [19] guarantees
that Lagrange multipliers exist when constraints (2)-(6) are
feasible and the utility functions Uf are either defined over
open sets (such as Uf (x) = log(x) with dom(Uf) = (0,∞))
or can be concavely extended to open sets, meaning that there
is an ε > 0 and a concave function Ũf : (−ε,∞) 7→ R such
that Ũf (x) = Uf (x) whenever x ≥ 0.2

Fact 1: (Replacing inequality with equality) If Assump-
tion 1 holds, problem (1)-(6) has an optimal solution vector
[x∗f , µ

(f),∗
l]f∈F,l∈L such that all constraints (2) take equalities.

Proof: Note that each µ(f)
l can appear on the left side in

at most one constraint (2) and appear on the right side in at
most one constraint (2). Let [x∗f , µ

(f),∗
l]f∈F,l∈L be an optimal

solution vector such that at least one inequality constraint (2)
is loose. Note that we can reduce the value of µ(f),∗

l on the
right side of a loose (2) until either that constraint holds with
equality, or until µ(f),∗

l reduces to 0. The objective function
value does not change, and no constraints are violated. We can
repeat the process until all inequality constraints (2) are tight.

III. THE NEW BACKPRESURE ALGORITHM

A. Discussion of Various Queueing Models

At each node, an independent queue backlog is maintained
for each session. At each slot t, let xf [t] be the source session
rates; and let µ(f)

l [t] be the link session rates. Some prior

2If dom(Uf) = [0,∞), such concave extension is possible if the right-
derivative of Uf at x = 0 is finite (such as for Uf (x) = log(1 + x)
or Uf (x) = min[x, 3]). Such an extension is impossible for the example
Uf (x) =

√
x because the slope is infinite at x = 0. Nevertheless, Lagrange

multipliers often exist even for these utility functions, such as when Slater’s
condition holds [19].

work enforces the constraint (2) via virtual queues Y (f)
n [t] of

the following form:

Y (f)
n [t+ 1] = max

{
Y (f)
n [t] + xf [t]1{n=Src(f)}

+
∑
l∈I(n)

µ
(f)
l [t]−

∑
l∈O(n)

µ
(f)
l [t], 0

}
. (7)

While this virtual equation is a meaningful approximation, it
differs from reality in that new injected data are allowed to
be transmitted immediately, or equivalently, a single packet
is allowed to enter and leave many nodes within the same
slot. Further, there is no clear connection between the virtual
queues Y (f)

n [t] in (7) and the actual queues in the network.
Indeed, it is easy to construct examples that show there can
be an arbitrarily large difference between the Y (f)

n [t] value in
(7) and the physical queue size in actual networks.

An actual queueing network has queues Z(f)
n [t] with the

following dynamics:

Z(f)
n [t+ 1] ≤max

{
Z(f)
n [t]−

∑
l∈O(n)

µ
(f)
l [t], 0

}
+ xf [t]1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l [t]. (8)

This is faithful to actual queue dynamics and does not allow
data to be retransmitted over multiple hops in one slot. Note
that (8) is an inequality because the new arrivals from other
nodes may be strictly less than

∑
l∈I(n) µ

(f)
l [t] when those

other nodes do not have enough backlog to send. The model
(8) allows for any decisions to be made to fill the transmission
values µ

(f)
l [t] in the case that Z(f)

n [t] ≤
∑
l∈O(n) µ

(f)
l [t],

provided that (8) holds.
This paper develops an algorithm that converges to the

optimal utility defined by problem (1)-(6), and that produces
worst-case bounded queues on the actual queueing network,
that is, with actual queues that evolve as given in (8). To
begin, it is convenient to introduce the following virtual queue
equation

Q(f)
n [t+ 1] =Q(f)

n [t]−
∑

l∈O(n)

µ
(f)
l [t] + xf [t]1{n=Src(f)}

+
∑
l∈I(n)

µ
(f)
l [t], (9)

where Q
(f)
n [t] represents a virtual queue value associated

with session f at node n. At first glance, this model (9)
appears to be only an approximation, perhaps even a worse
approximation than (7), because it allows the Q(f)

n [t] values
to be negative. Indeed, we use Q(f)

n [t] only as virtual queues
to inform the algorithm and do not treat them as actual
queues. However, this paper shows that using these virtual
queues to choose the µ[t] decisions ensures not only that
the desired constraints (2) are satisfied, but that the resulting
µ[t] decisions create bounded queues Z(f)

n [t] in the actual
network, where the actual queues evolve according to (8).
In short, our algorithm can be faithfully implemented with

PROC. IEEE INFOCOM 2017

respect to actual queueing networks, and converges to exact
optimality on those networks.

The next lemma shows that if an algorithm can guarantee
virtual queues Q(f)

n [t] defined in (9) are bounded, then actual
physical queues satisfying (8) are also bounded.

Lemma 1: Consider a network flow problem described by
problem (1)-(6). For all l ∈ L and f ∈ F , let µ(f)

l [t], xf [t] be
decisions yielded by a dynamic algorithm. Suppose Y (f)

n [t],
Z

(f)
n [t], Q

(f)
n [t] evolve by (7)-(9) with initial conditions

Y
(f)
n [0] = Z

(f)
n [0] = Q

(f)
n [0] = 0. If there exists a constant

B > 0 such that |Q(f)
n [t]| ≤ B, ∀t, then

1) Z
(f)
n [t] ≤ 2B +

∑
l∈O(n) Cl for all t ∈ {0, 1, 2, . . .}.

2) Y
(f)
n [t] ≤ 2B +

∑
l∈O(n) Cl for all t ∈ {0, 1, 2, . . .}.

Proof:
1) Fix f ∈ F , n ∈ N \ {Dst(f)}. Define an auxiliary

virtual queue Q̂
(f)
n [t] that is initialized by Q̂

(f)
n [0] =

B+
∑
l∈O(n) Cl and evolves according to (9). It follows

that Q̂(f)
n [t] = Q

(f)
n [t] + B +

∑
l∈O(n) Cl,∀t. Since

Q
(f)
n [t] ≥ −B, ∀t by assumption, we have Q̂

(f)
n [t] ≥∑

l∈O(n) Cl ≥
∑
l∈O(n) µ

(f)
l [t],∀t. This implies that

Q̂
(f)
n [t] also satisfies:

Q̂(f)
n [t+ 1] = max

{
Q̂(f)
n [t]−

∑
l∈O(n)

µ
(f)
l [t], 0

}
+ xf [t]1{n=Src(f)} +

∑
l∈I(n)

µ
(f)
l [t],∀t

(10)

which is identical to (8) except the inequality is replaced
by an equality. Since Z(f)

n [0] = 0 < Q̂
(f)
n [0]; and Q̂(f)

n [t]

satisfies (10), by inductions, Z(f)
n [t] ≤ Q̂(f)

n [t],∀t.
Since Q̂

(f)
n [t] = Q

(f)
n [t] + B +

∑
l∈O(n) Cl,∀t

and Q
(f)
n [t] ≤ B, ∀t, we have Q̂

(f)
n [t] ≤ 2B +∑

l∈O(n) Cl,∀t. It follows that Z
(f)
n [t] ≤ 2B +∑

l∈O(n) Cl,∀t.
2) The proof is similar and is omitted for brevity.

B. The New Backpressure Algorithm

In this subsection, we propose a new backpressure algorithm
that yields source session rates xf [t] and link session rates
µ
(f)
l [t] at each slot such that the physical queues for each

session at each node are bounded by a constant and the time
average utility satisfies

1

t

t−1∑
τ=0

∑
f∈F

Uf (xf [t]) ≥
∑
f∈F

Uf (x∗f)−O(1/t),∀t,

where x∗f are from the optimal solution to (1)-(6). Note that
Jensen’s inequality further implies that

∑
f∈F

Uf
(1

t

t−1∑
τ=0

xf [τ]
)
≥
∑
f∈F

Uf (x∗f)−O(1/t),∀t.

The new backpressure algorithm3 is described in Algorithm
1. Similar to existing backpressure algorithms, the updates in
Algorithm 1 at each node n are fully distributed and only
depend on weights at itself and its neighbor nodes. Unlike
existing backpressure algorithms, the weights used to update
decision variables xf [t] and µ(f)

l [t] are not the virtual queues
Q

(f)
n [t] themselves, rather, they are augmented values W (f)

n [t]
equal to the sum of the virtual queues and the amount of net
injected data in the previous slot t−1. In addition, the updates
involve an additional quadratic term, which is similar to a term
used in proximal algorithms [15].

Algorithm 1 The New Backpressure Algorithm
Let α > 0 be a constant parameter. Initialize xf [−1] = 0,
µ
(f)
l [−1] = 0,∀f ∈ F ,∀l ∈ L and Q

(f)
n [0] = 0,∀n ∈

N ,∀f ∈ F . At each time t ∈ {0, 1, 2, . . .}, each node n
does the following:
• For each f ∈ F , if node n is not the destination node of

session f , i.e., n 6= Dst(f), then define weight W (f)
n [t]:

W (f)
n [t] =Q(f)

n [t] + xf [t− 1]1{n=Src(f)} +
∑
l∈I(n)

µ
(f)
l [t− 1]

−
∑

l∈O(n)

µ
(f)
l [t− 1], (11)

If node n is the destination node, i.e., n = Dst(f), then
define W (f)

n [t] = 0. Notify neighbor nodes (nodes k that
can send session f to node n, i.e., ∀k such that f ∈
S(k,n)) about this new W

(f)
n [t] value.

• For each f ∈ F , if node n is the source node of session
f , i.e., n = Src(f), choose xf [t] as the solution to

max
xf

Uf (xf)−W (f)
n [t]xf − α

(
xf − xf [t− 1]

)2
(12)

s.t. xf ∈ dom(Uf) (13)

• For all (n,m) ∈ O(n), choose {µ(f)
(n,m)(t),∀f ∈ F} as

the solution to the following convex program:

max
µ
(f)

(n,m)

∑
f∈F

(
W (f)
n (t)−W (f)

m (t)
)
µ
(f)
(n,m)

− α
∑
f∈F

(
µ
(f)
(n,m) − µ

(f)
(n,m)[t− 1]

)2
(14)

s.t.
∑
f∈F

µ
(f)
(n,m) ≤ C(n,m) (15)

µ
(f)
(n,m) ≥ 0,∀f ∈ S(n,m) (16)

µ
(f)
(n,m) = 0,∀f 6∈ S(n,m) (17)

• For each f ∈ F , if node n is not the destination of f ,
i.e., n 6= Dst(f), update virtual queue Q(f)

n [t+ 1] by (9).

3Note that Algorithm 1 involves a global parameter α that should be chosen
according to the number of total links and sessions in the network (see Section
IV). In the extended version [20], we propose another backpressure algorithm
only with local parameters that can be chosen by each individual node.

PROC. IEEE INFOCOM 2017

C. Almost Closed-Form Updates in Algorithm 1

This subsection shows the decisions xf [t] and µ
(f)
l [t] in

Algorithm 1 have either closed-form solutions or “almost”
closed-form solutions at each iteration t.

Lemma 2: Let x̂f ≡ xf [t] denote the solution to (12)-(13).
1) Suppose dom(Uf) = [0,∞) and Uf (xf) is differen-

tiable. Let h(xf) = U ′f (xf) − 2αxf + 2αxf [t − 1] −
W

(f)
n [t]. If h(0) < 0, then x̂f = 0; otherwise x̂f is the

root to the equation h(xf) = 0 and can be found by a
bisection search.

2) Suppose dom(Uf) = (0,∞) and Uf (xf) = wf log(xf)
for some weight wf > 0. Then:

x̂f = (2αxf [t− 1]−W (f)
n [t])/(4α)

+

√
(W

(f)
n [t]− 2αxf [t− 1])2 + 8αwf/(4α)

Proof: The proof is easy and is omitted for brevity.
The problem (14)-(17) can be represented as follows by

completing the square and replacing maximization with min-
imization. Note that K = |S(n,m)| ≤ |F|.

min
1

2

K∑
k=1

(zk − ak)2 (18)

s.t.
K∑
k=1

zk ≤ b (19)

zk ≥ 0,∀k ∈ {1, 2, . . . ,K} (20)

Lemma 3: The solution to problem (18)-(20) is given by
z∗k = max{0, ak − θ∗},∀k ∈ {1, 2, . . . ,K} where θ∗ ≥ 0 can
be found either by a bisection search or by Algorithm 2 with
complexity O(K logK).

Proof: A similar problem where (19) is replaced with an
equality constraint in considered in [21]. The optimal solution
to this quadratic program is characterized by its KKT condition
and a corresponding algorithm can be developed to obtain its
KKT point. The proof is omitted for brevity.

Algorithm 2 Algorithm to solve problem (18)-(20)

1) Check if
∑K
k=1 max{0, ak} ≤ b holds. If yes, let

θ∗ = 0 and z∗k = max{0, ak},∀k ∈ {1, 2, . . . ,K} and
terminate the algorithm; else, continue to the next step.

2) Sort all ak,∈ {1, 2, . . . ,K} in a decreasing order π such
that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(K). Define S0 = 0.

3) For k = 1 to K
• Let Sk = Sk−1 + ak. Let θ∗ = Sk−b

k .
• If θ∗ ≥ 0, aπ(k) − θ∗ > 0 and aπ(k+1) − θ∗ ≤ 0,

then terminate the loop; else, continue to the next
iteration in the loop.

4) Let z∗k = max{0, ak − θ∗},∀k ∈ {1, 2, . . . ,K} and
terminate the algorithm.

Note that step (3) in Algorithm 2 has complexity O(K) and
hence the overall complexity of Algorithm 2 is dominated by
the sorting step (2) with complexity O(K log(K)).

IV. PERFORMANCE ANALYSIS OF ALGORITHM 1

A. Basic Facts from Convex Analysis

For any vector z ∈ Rn, ‖z‖ represents its Euclidean norm.
Definition 1 (Lipschitz Continuity): Let Z ⊆ Rn be a convex

set. Function h : Z → Rm is said to be Lipschitz continuous
on Z with modulus β if there exists β > 0 such that ‖h(z1)−
h(z2)‖ ≤ β‖z1 − z2‖ for all z1, z2 ∈ Z .

Definition 2 (Strongly Concave Functions): Let Z ⊆ Rn be
a convex set. Function h is said to be strongly concave on
Z with modulus α if there exists a constant α > 0 such that
h(z) + 1

2α‖z‖
2 is concave on Z .

By the definition of strongly concave functions, it is easy to
show that if h(z) is concave and α > 0, then h(z)−α‖z−z0‖2
is strongly concave with modulus 2α for any constant z0.

Lemma 4: Let Z ⊆ Rn be a convex set. Let function h be
strongly concave on Z with modulus α and zopt be the global
maximum of h on Z . Then, h(zopt) ≥ h(z) + α

2 ‖z
opt − z‖2

for all z ∈ Z .

B. Preliminaries

Define column vector µ = [µ
(f)
l]f∈F,l∈L as the stacked vec-

tor of all link session rates. Define column vector x = [xf]f∈F
as the stacked vector of all source session rates. Note that µ
has length |L||F| and x has length |F|. Thus, constraints (2)
can be vectorized as

g(x,µ) = Ax + Rµ ≤ 0, (21)

where matrix A =

 A1

...
A|F|

 is a |F|(|N |−1)×|F| source-

node incidence matrix such that each sub-matrix Af is a {0, 1}
matrix of size (|N | − 1)× |F| whose (n, f)-th entry is equal
to 1 if and only if node n is the source node of session f ; and
matrix R = Diag{R1, . . . ,R|F|} is a block diagonal matrix
with R1, . . . ,R|F| on its diagonal such that each sub-matrix
Rf is a {±1, 0} node-arc incidence matrix of size (|N | −
1)× |L| whose (n, l)-th entry is equal to 1 if and only if link
l flows into node n and is equal to −1 if and only if link l
flows out of node n.

Define y =

[
x
µ

]
and B = [A,R]. Then, constraints (2)

can be further rewritten as

g(y) = By ≤ 0. (22)

Lemma 5: The vector function g(y) is Lipschitz continuous
with modulus

β =
√
|F|+

√
2|L|. (23)

Proof: Note that linear function g(y) = By is
Lipschitz continuous with modulus ‖B‖2 where ‖B‖2
is the induced matrix l2 norm defined as ‖B‖2 =

supx6=0{
‖Bx‖
‖x‖ }. Applying matrix norm inequalities (for

block matrices) ‖[H1,H2]‖2 ≤ ‖H1‖2 + ‖H2‖2 and
‖Diag{H1, . . . ,HK}‖2 ≤ max1≤k≤K{‖Hk‖2} yields
‖B‖2 ≤ ‖A‖2 + ‖R‖2 ≤ ‖A‖2 + maxf∈F{‖Rf‖2}. Note

PROC. IEEE INFOCOM 2017

that exactly |F| entries in matrix A are 1 and all the other
entries are 0; and each matrix Rf has at most 2|L| non-zero
entries whose absolute values are 1. By the fact ‖H‖2 ≤√∑m

i=1

∑n
j=1 |Hij | for any matrix H ∈ Rm×n, we know

‖A‖2 ≤
√
|F| and ‖Rf‖2 ≤

√
2|L|,∀f ∈ F . It follows that

‖B‖2 ≤
√
|F|+

√
2|L|.

Define column vector Q[t] =
[
Q

(f)
n [t]

]
f∈F,n∈N\{Dst(f)} as

the stacked vector of all virtual queues Q(f)
n [t] defined in (9).

Define L(t) = 1
2‖Q[t]‖2 and call it a Lyapunov function.

Define the Lyapunov drift as ∆[t] = L[t+ 1]− L[t].
The update equation (9) can be written in vector form:

Q[t+ 1] = Q[t] + g(y[t]) (24)

Lemma 6: At each iteration t ∈ {0, 1, . . .} in Algorithm 1,
the Lyapunov drift is given by

∆[t] = QT[t]g(y[t]) +
1

2
‖g(y[t])‖2 (25)

Proof: By the definition of ∆[t], we have

∆[t] =
1

2
QT[t+ 1]Q[t+ 1]− 1

2
QT[t]Q[t]

(a)
=

1

2
(QT[t] + gT(y[t]))(Q[t] + g(y[t]))− 1

2
QT[t]Q[t]

= QT[t]g(y[t]) +
1

2
‖g(y[t])‖2

where (a) follows from (24).
Define f(y) =

∑
f∈F Uf (xf). At each time t, consider

choosing a decision vector y[t] = [x[t];µ[t]] to solve the
following:

max
y

f(y)−
(
Q[t] + g(y[t− 1])

)T
g(y)− α‖y − y[t− 1]‖2

(26)
s.t. (3)-(6) (27)

The expression (26) is a modified drift-plus-penalty expression.
Unlike the standard drift-plus-penalty expressions from [4], the
above expression augments the virtual queues by the amount
g(y[t− 1]). It also includes a “prox”-like term that penalizes
deviation from the previous y[t−1] vector. This results in the
novel backpressure-type algorithm of Algorithm 1. Indeed, the
decisions in Algorithm 1 were derived as the solution to the
above problem (26)-(27). This is formalized in the next lemma.

Lemma 7: At each iteration t ∈ {0, 1, . . .}, the action y[t] =
[x[t];µ[t]] jointly chosen in Algorithm 1 is the solution to
(26)-(27).

Proof: Note that if we define column vector W[t] =[
W

(f)
n [t]

]
f∈F,n∈N\{Dst(f)} as the stacked vector of all weights

W
(f)
n [t] in (11), then (26) can be written as f(y) −

WT[t]g(y)−α‖y−y[t− 1]‖2. The proof involves collecting
terms associated with the xf [t] and µ

(f)
l [t] decisions and is

omitted for brevity.
It remains to show that this modified backpressure algorithm

leads to fundamentally improved performance.
Lemma 8: Let y∗ be an optimal solution to problem (1)-(6)

given in Fact 1, i.e., g(y∗) = 0. If α ≥ 1
2

(√
|F|+

√
2|L|

)2
,

then the action y[t] = [x[t];µ[t]] chosen in Algorithm 1 at
each iteration t ∈ {0, 1, . . .} satisfies

−∆[t] + f(y[t])

≥f(y∗) + α
(
‖y∗ − y[t]‖2 − ‖y∗ − y[t− 1]‖2

)
Proof: Note that y[t−1] and Q[t]+g(y[t−1]) appear as

known constants in (26)-(27). Since f(y) is concave and g(y)

is linear, it follows that f(y)−
(
Q[t] + g(y[t− 1])

)T
g(y)−

α‖y − y[t − 1]‖2 is strongly concave with respect to y with
modulus 2α. By Lemma 7, y[t] is chosen to solve problem
(26)-(27). Note that y∗ satisfies (3)-(6) by definition. Thus, by
Lemma 4, we have

f(y[t])− (Q[t] + g(y[t− 1]))Tg(y[t])− α‖y[t]− y[t− 1]‖2

≥f(y∗)−
(
Q[t] + g(y[t− 1])

)T
g(y∗)− α‖y∗ − y[t− 1]‖2

+ α‖y∗ − y[t]‖2
(a)
=f(y∗)− α‖y∗ − y[t− 1]‖2 + α‖y∗ − y[t]‖2 (28)

where (a) follows from the fact that g(y∗) = 0.
Recall that uT

1u2 = 1
2

(
‖u1‖2 + ‖u2‖2 − ‖u1 − u2‖2

)
for

any u1,u2 ∈ Rm. Thus, we have

gT(y[t− 1])g(y[t])

=
1

2

(
‖g(y[t− 1])‖2 + ‖g(y[t])‖2 − ‖g(y[t− 1])− g(y[t])‖2

)
.

(29)
Substituting (29) into (28) and rearranging terms yields

f(y[t])−QT[t]g(y[t])

≥f(y∗)− α‖y∗ − y[t− 1]‖2 + α‖y∗ − y[t]‖2

+ α‖y[t]− y[t− 1]‖2 +
1

2
‖g(y[t− 1])‖2 +

1

2
‖g(y[t])‖2

− 1

2
‖g(y[t− 1])− g(y[t])‖2

(a)

≥f(y∗)− α‖y∗ − y[t− 1]‖2 + α‖y∗ − y[t]‖2 +
1

2
‖g(y[t])‖2

+
1

2
‖g(y[t− 1])‖2

+
(
α− 1

2

(√
|F|+

√
2|L|

)2)‖y[t]− y[t− 1]‖2

(b)

≥f(y∗)− α‖y∗ − y[t− 1]‖2 + α‖y∗ − y[t]‖2 +
1

2
‖g(y[t])‖2

+
1

2
‖g(y[t− 1])‖2

where (a) follows from the fact that ‖g(y[t])−g(y[t−1])‖ ≤(√
|F| +

√
2|L|

)
‖y[t] − y[t − 1]‖, i.e., Lemma 5; and (b)

follows from the fact that α ≥ 1
2

(√
|F|+

√
2|L|

)2
.

Subtracting (25) from the above inequality and cancelling
the common terms on both sides yields

−∆[t] + f(y[t])

≥f(y∗)− α‖y∗ − y[t− 1]‖2 + α‖y∗ − y[t]‖2

+
1

2
‖g(y[t− 1])‖2

≥f(y∗)− α‖y∗ − y[t− 1]‖2 + α‖y∗ − y[t]‖2.

PROC. IEEE INFOCOM 2017

C. Utility Optimality Gap Analysis

Lemma 9: Let y∗ be an optimal solution to problem (1)-(6)
given in Fact 1, i.e., g(y∗) = 0. If α ≥ 1

2

(√
|F| +

√
2|L|

)2
in Algorithm 1, then for all t ≥ 1,

t−1∑
τ=0

f(y[τ]) ≥ tf(y∗)− α‖y∗‖2 +
1

2
‖Q[t]‖2.

Proof: By Lemma 8, we have −∆[τ]+f(y[τ]) ≥ f(y∗)+
α
(
‖y∗ − y[t]‖2 − ‖y∗ − y[t − 1]‖2

)
,∀τ ∈ {0, 1, . . . , t − 1}.

Summing over τ ∈ {0, 1, . . . , t− 1} yields

t−1∑
τ=0

f(y[τ])−
t−1∑
τ=0

∆[τ]

≥tf(y∗) + α

t−1∑
τ=0

(
‖y∗ − y[τ]‖2 − ‖y∗ − y[τ − 1]‖2

)
=tf(y∗) + α

(
‖y∗ − y[t− 1]‖2 − ‖y∗ − y[−1]‖2

)
(a)

≥ tf(y∗)− α‖y∗‖2

where (a) follows from y[−1] = 0 in Algorithm 1.
Recall ∆[τ] = L[τ+1]−L[τ] = 1

2‖Q[τ+1]‖2− 1
2‖Q[τ]‖2,

simplifying summations and rearranging terms yields

t−1∑
τ=0

f(y[τ]) ≥tf(y∗)− α‖y∗‖2 +
1

2
‖Q[t]‖2 − 1

2
‖Q[0]‖2

(a)
= tf(y∗)− α‖y∗‖2 +

1

2
‖Q[t]‖2

where (a) follows from the fact that Q[0] = 0.
The next theorem shows that Algorithm 1 yields a vanishing

utility optimality gap that approaches zero like O(1/t).
Theorem 1: Let y∗ be an optimal solution to problem (1)-(6)

given in Fact 1, i.e., g(y∗) = 0. If α ≥ 1
2

(√
|F| +

√
2|L|

)2
in Algorithm 1, then for all t ≥ 1, we have

1

t

t−1∑
τ=0

∑
f∈F

Uf (xf [τ]) ≥
∑
f∈F

Uf (x∗f)− α

t
‖y∗‖2.

Moreover, if we define xf [t] = 1
t

∑t−1
τ=0 xf [τ],∀f ∈ F , then∑

f∈F

Uf (xf [t]) ≥
∑
f∈F

Uf (x∗f)− α

t
‖y∗‖2.

Proof: Recall that f(y) =
∑
f∈F Uf (xf). By Lemma 9,

we have
t−1∑
τ=0

∑
f∈F

Uf (xf [τ]) ≥t
∑
f∈F

Uf (x∗f)− α‖y∗‖2 +
1

2
‖Q[t]‖2

(a)

≥ t
∑
f∈F

Uf (x∗f)− α‖y∗‖2,

where (a) follows from the trivial fact that ‖Q[t]‖2 ≥ 0.
Dividing both sides by a factor t yields the first inequality in

this theorem. The second inequality follows from the concavity
of Uf (·) and Jensen’s inequality.

D. Finite Queue Bound Analysis

Lemma 10: Let Q[t], t ∈ {0, 1, . . .} be the virtual queues in
Algorithm 1. For any t ≥ 1, Q[t] =

∑t−1
τ=0 g(y[τ]).

Proof: This lemma follows directly from the fact that
Q[0] = 0 and queue update equation (9) can be written as
Q[t+ 1] = Q[t] + g(y[t− 1]).

The next theorem shows the boundedness of all virtual
queues Q(f)

n [t] in Algorithm 1.
Theorem 2: Let y∗ be an optimal solution to problem (1)-

(6) given in Fact 1, i.e., g(y∗) = 0, and λ∗ be a Lagrange
multiplier vector given in Assumption 2. If α ≥ 1

2

(√
|F| +√

2|L|
)2

in Algorithm 1, then for all t ≥ 1,

|Q(f)
n [t]| ≤ 2‖λ∗‖+

√
2α‖y∗‖,∀f ∈ F ,∀n ∈ N \ {Dst(f)}.

Proof: Let q(λ) = supy∈C
{
f(y) − λTg(y)

}
be the

Lagrangian dual function that is identical to what is defined
in Assumption 2. For all τ ∈ {0, 1, . . . , }, by Assumption 2,
we have

f(y∗) = q(λ∗) ≥ f(y[τ])− λ∗,Tg(y[τ])

where the inequality follows from the definition of q(λ∗).
Rearranging terms yields

f(y[τ]) ≤ f(y∗) + λ∗,Tg(y[τ]),∀τ ∈ {0, 1, . . .}.

Fix t > 0. Summing over τ ∈ {0, 1, . . . , t− 1} yields
t−1∑
τ=0

f(y[τ]) ≤tf(y∗) +

t−1∑
τ=0

λ∗,Tg(y[τ])

=tf(y∗) + λ∗,T
t−1∑
τ=0

g(y[τ])

(a)
= tf(y∗) + λ∗,TQ[t]

(b)

≤tf(y∗) + ‖λ∗‖‖Q[t]‖

where (a) follows form Lemma 10 and (b) follows from
Cauchy-Schwarz inequality. On the other hand, by Lemma
9, we have

t−1∑
τ=0

f(y[τ]) ≥ tf(y∗)− α‖y∗‖2 +
1

2
‖Q[t]‖2.

Combining the last two inequalities and cancelling the com-
mon terms yields

1

2
‖Q[t]‖2 − α‖y∗‖2 ≤ ‖λ∗‖‖Q[t]‖

⇒
(
‖Q[t]‖ − ‖λ∗‖

)2 ≤ ‖λ∗‖2 + 2α‖y∗‖2

⇒‖Q[t]‖ ≤ ‖λ∗‖+
√
‖λ∗‖2 + 2α‖y∗‖2

(a)⇒‖Q[t]‖ ≤ 2‖λ∗‖+
√

2α‖y∗‖

where (a) follows from the basic inequality
√
a+ b ≤

√
a+
√
b

for any a, b ≥ 0.
Thus, for any f ∈ F and n ∈ N \ {Dst(f)}, we have

|Q(f)
n [t]| ≤ ‖Q[t]‖ ≤ 2‖λ∗‖+

√
2α‖y∗‖.

PROC. IEEE INFOCOM 2017

This theorem shows that the absolute values of all virtual
queues Q(f)

n [t] are bounded by the constant B = 2‖λ∗‖ +√
2α‖y∗‖. By Lemma 1, the actual physical queues Z(f)

n [t]

evolving via (8) satisfy Z(f)
n [t] ≤ 2B +

∑
l∈O(n) Cl,∀t. This

is summarized in the next corollary.
Corollary 1: Let y∗ be an optimal solution to problem

(1)-(6) given in Fact 1, i.e., g(y∗) = 0, and λ∗ be a
Lagrange multiplier vector given in Assumption 2. If α ≥
1
2

(√
|F| +

√
2|L|

)2
in Algorithm 1, then all actual physical

queues Z(f)
n [t],∀f ∈ F ,∀n ∈ N \ {Dst(f)} in the network

evolving via (8) satisfy

Z(f)
n [t] ≤4‖λ∗‖+ 2

√
2α‖y∗‖+

∑
l∈O(n)

Cl, ∀t.

E. Performance of Algorithm 1

Theorems 1 and 2 together imply that Algorithm 1 with
α ≥ 1

2

(√
|F| +

√
2|L|

)2
can achieve a vanishing utility

optimality gap that decays like O(1/t), where t is number
of iterations, and guarantees the physical queues at each node
are always bounded by a constant that is independent of the
utility optimality gap.

This is superior to existing backpressure algorithms from
[5], [10], [4] that achieve an O(1/V) utility gap only at the
cost of an O(V 2) or O(V) queue length, where V is an
algorithm parameter. To obtain a vanishing utility gap, existing
backpressure algorithms in [5], [10], [4] necessarily yield un-
bounded queues. We also comment that O(V 2) queue bound in
the primal-dual type backpressure algorithm [5] is actually of
the order V 2‖λ∗‖+B1 where λ∗ is the Lagrangian multiplier
vector attaining strong duality and B1 is a constant determined
by the problem parameters. A recent work [22] shows that the
O(V) queue bound in the backpressure algorithm from drift-
plus-penalty is of the order V ‖λ∗‖ + B2 where B2 is also a
constant determined by the problem parameters. Since λ∗ is a
constant vector independent of V , both algorithms are claimed
to have O(V 2) or O(V) queue bounds. By Corollary 1, Algo-
rithm 1 guarantees physical queues at each node are bounded
by 4‖λ∗‖ + B3, where B3 = 2

√
2α‖y∗‖ +

∑
l∈O(n) Cl is

constant for a given problem. Thus, the constant queue bound
guaranteed by Algorithm 1 is typically smaller than the O(V 2)
or O(V) queue bounds from [5] and [22] even for a small
V . (A small V can yield a poor utility performance for the
backpressure algorithms in [5], [4].)

V. NUMERICAL EXPERIMENT

In this section, we consider a simple network with 6 nodes
and 8 links and 2 sessions as described in Figure 1. This
network has two sessions: session 1 from node 1 to node
6 has utility function log(x1) and session 2 from node 3 to
node 4 has utility function 1.5 log(x2). (The log utilities are
widely used as metrics of proportional fairness in the network
[17].) The routing path of each session is arbitrary as long as
data can be delivered from the source node to the destination
node. For simplicity, assume that each link has capacity 1. The

optimal source session rate to problem (1)-(6) is x∗1 = 1.2 and
x∗2 = 1.8 and link session rates, i.e., static routing for each
session, is drawn in Figure 2.

1

Session	2:	3->4	

Session	1:	1->6	

1	

2	

3	

4	

5	

6	

l1

l2

l3

l4

l5

l6

l7

l8

Fig. 1. A simple network with 6 nodes, 8 links and 2 sessions.

1

Session	1:	1->6	

1	

2	

3	

4	

5	

6	

1	

1	

1	

0.2	

0.2	
0.2	

Session	2:	3->4	

3	

4	

5	

1	

0.8	

0.8	

Fig. 2. The optimal routing for the network in Figure 1.

To compare the convergence performance of Algorithm 1
and the backpressure algorithm in [4] (with the best utility-
delay tradeoff among all existing backpressure algorithms), we
run both Algorithm 1 with α = 1

2

(√
|F| +

√
2|L|

)2
= 14.7

and the backpressure algorithm in [4] with V = 500 to plot
Figure 3. It can be observed from Figure 3 that Algorithm 1
converges to the optimal source session rates faster than the
backpressure algorithm in [4]. The backpressure algorithm in
[4] with V = 500 takes around 2500 iterations to converges to
source rates close to (1.2, 1.8) while Algorithm 1 only takes
around 800 iterations to converges to (1.2, 1.8) (as shown
in the zoom-in subfigure at the top right corner.) In fact,
the backpressure algorithm in [4] with V = 500 can not
converge to the exact optimal source session rate (1.2, 1.8)
but can only converge to its neighborhood with a distance
gap determined by the value of V . This is an effect from the
fundamental [O(1/V), O(V)] utility-delay tradeoff of the the
backpressure algorithm in [4]. In contrast, Algorithm 1 can
eventually converge to the exact optimal source session rate
(1.2, 1.8). A zoom-in subfigure at the bottom right corner in
Figure 1 verifies this and shows that the source rate for Session
1 in Algorithm 1 converges to 1.2 while the source rate in the
backpressure algorithm in [4] with V = 500 oscillates around
a point slightly larger than 1.2.

The analysis in Section IV-D shows that Algorithm 1
guarantees the actual queues in the network are bounded by
constant 4‖λ∗‖ + 2

√
2α‖y∗‖ +

∑
l∈O(n) Cl. Recall that the

backpressure algorithm in [4] can guarantee the actual queues

PROC. IEEE INFOCOM 2017

Iterations
0 500 1000 1500 2000 2500 3000 3500 4000

So
ur

ce
 R

at
es

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800
0

0.5

1

1.5

2

3000 3500 4000
1.195

1.2
1.205

New Backpressure Alg: Algorithm 1Backpressure Alg in [4]

Session 1: 1->6

Session 2: 3->4

Fig. 3. Convergence performance comparison between Algorithm 1 and the
backpressure algorithm in [4].

in the network are bounded by a constant of order V ‖λ∗‖.
Figure 4 plots the sum of actual queue lengths at all nodes
in the network for Algorithm 1 and the backpressure algorithm
in [4] with V = 10, 100 and 500. (Recall a larger V in the
backpressure algorithm in [4] yields a smaller utility gap but a
larger queue length.) It can be observed that Algorithm 1 has
the smallest actual queue length (see the zoom-in subfigure)
and the actual queue length of the backpressure algorithm in
[4] scales linearly with respect to V .

Iterations
0 500 1000 1500 2000 2500 3000

 N
et

w
or

k
Su

m
 P

hy
si

ca
l Q

ue
ue

 L
en

gt
h

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300
0

10

20

30

40

Backpressure Alg in [4] (V=500)

Backpressure Alg in [4] (V=100)

Backpressure Alg in [4] (V=10)

New Backpressure Alg: Algorithm 1

Fig. 4. Actual queue length comparison between Algorithm 1 and the
backpressure algorithm in [4].

VI. CONCLUSION

This paper develops a new first-order Lagrangian dual type
backpressure algorithm for joint rate control and routing in
multi-hop data networks. The new backpressure algorithm can

achieve vanishing utility optimality gaps with finite queue
lengths. This improves the state-of-art [O(1/V), O(V 2)] or
[O(1/V), O(V)] utility-delay tradeoff attained by existing
backpressure algorithms [5], [9], [7], [10].

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[2] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2003.

[3] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends in
Networking, 2006.

[4] M. J. Neely, Stochastic network optimization with application to com-
munication and queueing systems. Morgan & Claypool Publishers,
2010.

[5] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and mac
for stability and fairness in wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 8, pp. 1514–1524, 2006.

[6] A. L. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queueing Systems, vol. 50, no. 4, pp.
401–457, 2005.

[7] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Proceedings of IEEE Conference on Decision and
Control (CDC), 2004.

[8] J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Opportunistic power
scheduling for dynamic multi-server wireless systems,” IEEE Transac-
tions on Wireless Communications, vol. 5, no. 6, pp. 1506–1515, 2006.

[9] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 1, pp. 89–103, 2005.

[10] J. Liu, N. B. Shroff, C. H. Xia, and H. D. Sherali, “Joint congestion
control and routing optimization: An efficient second-order distributed
approach,” IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp.
1404–1420, 2015.

[11] M. J. Neely, “Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 24, no. 8, pp. 1489–1501, 2006.

[12] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “LIFO-
backpressure achieves near-optimal utility-delay tradeoff,” IEEE/ACM
Transactions on Networking, vol. 21, no. 3, pp. 831–844, 2013.

[13] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method
for network utility maximization–I: algorithm,” IEEE Transactions on
Automatic Control, vol. 58, no. 9, pp. 2162–2175, 2013.

[14] M. Zargham, A. Ribeiro, and A. Jadbabaie, “Accelerated backpressure
algorithm,” in Proceedings of IEEE Global Communications Conference
(GLOBECOM), 2013.

[15] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 123–231, 2013.

[16] X. Lin and N. B. Shroff, “Utility maximization for communication
networks with multipath routing,” IEEE Transactions on Automatic
Control, vol. 51, no. 5, pp. 766–781, 2006.

[17] F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: Shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, pp. 237–252, 1998.

[18] S. H. Low and D. E. Lapsley, “Optimization flow control—I: basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, 1999.

[19] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar, Convex Analysis and
Optimization. Athena Scientific, 2003.

[20] H. Yu and M. J. Neely, “A new backpressure algorithm for joint rate
control and routing with vanishing utility optimality gaps and finite
queue lengths,” arXiv:1701.04519, 2017.

[21] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient pro-
jections onto the l1-ball for learning in high dimensions,” in Proceedings
of International Conference on Machine learning (ICML), 2008.

[22] M. J. Neely, “A simple convergence time analysis of drift-plus-
penalty for stochastic optimization and convex programs,” arXiv preprint
arXiv:1412.079, 2014.

