
PROC. IEEE INFOCOM 2016
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Abstract—This paper considers dynamic power allocation in
MIMO fading systems with unknown channel state distributions.
First, the ideal case of perfect instantaneous channel state
information at the transmitter (CSIT) is treated. Using the
drift-plus-penalty method, a dynamic power allocation policy is
developed and shown to approach optimality, regardless of the
channel state distribution and without requiring knowledge of
this distribution. Next, the case of delayed and quantized channel
state information is considered. Optimal utility is fundamentally
different in this case, and a different online algorithm is developed
that is based on convex projections. The proposed algorithm for
this delayed-CSIT case is shown to have an O(�) optimality gap,
where � is the quantization error of CSIT.

I. INTRODUCTION

During the past decade, the multiple-input multiple-output
(MIMO) technique has been recognized as one of the most
important techniques for increasing the capabilities of wireless
communication systems. In the wireless fading channel, where
the channel changes over time, the problem of power alloca-
tion is to determine the transmit covariance of the transmitter
to maximize the ergodic capacity subject to both long term
and short term power constraints. It is often reasonable to
assume that instantaneous channel state information (CSI)
is available at the receiver through training. Most works on
power allocation in MIMO fading systems also assume that
statistical information about the channel state, referred to as
channel distribution information (CDI), is available at the
transmitter. Under the assumption of perfect instantaneous
channel state information at the receiver (CSIR) and perfect
channel distribution information at the transmitter (CDIT),
prior work on power allocation in MIMO fading systems can
be categorized into two cases:

• Perfect instantaneous channel state information at the
transmitter (ideal-CSIT): In the ideal case of perfect
CSIT, optimal power allocation is known to be a water-
filling solution [1]. Computation of water-levels involves
a one-dimensional integral equation for fading channels
with i.i.d. Rayleigh entries or a multi-dimensional integral
equation for general fading channels [2].

• No CSIT: If CSIT is unavailable, the optimal power allo-
cation is in general still open. If the channel matrix has
i.i.d. Rayleigh entries, then the optimal power allocation
is known to be the identity transmit covariance scaled to
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satisfy the power constraint [1]. The optimal power allo-
cation in MIMO fading channels with correlated Rayleigh
entries is obtained in [3], [4]. The power allocation in
MIMO fading channels is further considered in [5] under
a more general channel correlation model.

This prior work relies on accurate CDIT and/or on restrictive
channel distribution assumptions. It can be difficult to accu-
rately estimate the CDI, especially when there are complicated
correlations. Solutions that base decisions on perfect CDIT
can be suboptimal due to mismatches. This paper designs
algorithms that do not require prior knowledge of the channel
distribution, yet perform arbitrarily close to the optimal value
that can be achieved by having this knowledge. Further, the
convergence time is computed and shown to be significantly
smaller than the time required to accurately estimate the
channel distribution.

The ideal-CSIT assumption is reasonable in time-division
duplex (TDD) systems with symmetric TDD wireless chan-
nels. However, in frequency-division duplex (FDD) scenarios
and other scenarios without channel symmetry, the CSI must
be estimated at the receiver, quantized, and reported back to
the transmitter with a time delay. This paper first considers the
ideal-CSIT case and develops a solution that does not require
CDIT. Next, the case of delayed and quantized CSIT is con-
sidered and a fundamentally different algorithm is developed
for that case. The latter algorithm again does not use CDIT,
but achieves a utility within O(�) of the best utility that can be
achieved even with perfect CDIT, where � is the quantization
error. This shows that delayed but accurate CSIT (with � ⇡ 0)
is almost as good as having perfect CDIT.

A. Related work and our contributions

In the ideal CSIT case, the proposed dynamic power allo-
cation policy is an adaption of the general drift-plus-penalty
algorithm for stochastic network optimization [6], [7]. In
this MIMO context, the current paper shows the algorithm
provides strong sample path and convergence time guarantees.
The dynamic of the drift-plus-penalty algorithm is similar to
that of the stochastic dual subgradient algorithm, although
the optimality analysis and performance bounds are different.
The stochastic dual subgradient algorithm has been applied
in optimization of the wireless fading channel without CDI,
e.g., downlink power scheduling in single antenna cellular
systems [8], power allocation in single antenna broadcast
OFDM channels [9], scheduling and resource allocation in
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random access channels [10], power allocation in multi-carrier
MIMO networks [11].

In the delayed and quantized CSIT case, the situation is sim-
ilar to the scenario of online convex optimization [12] except
that we are unable to observe true history reward functions
due to channel quantization. The proposed dynamic power
allocation policy can be viewed as an online algorithm with
inaccurate history information. The current paper analyzes the
performance loss due to CSI quantization error and provides
strong sample path and convergence time guarantees of this
algorithm. According to the authors’ knowledge, online convex
optimization with inaccurate history information has not been
studied before. The analysis in this MIMO context can be
extended to more general online convex optimization with
inaccurate history information. Online optimization has been
applied in power allocation in wireless fading channels without
CDIT and with delayed and accurate CSIT, e.g., suboptimal
online power allocation in single antenna single user channels
[13], suboptimal online power allocation in single antenna
multiple user channels [14]. A close related recent work is
[15], where online power allocation in MIMO systems is
considered. The online algorithm in [15] is different from our
algorithm and follows a matrix exponential learning scheme
requiring the computation of matrix exponentials at each
slot. In contrast, our online algorithm only involves a simple
projection at each slot and a closed-form solution of this
projection is derived in this paper. Work [15] also considers
the effect of imperfect CSIT by assuming CSIT is unbiased,
i.e., expected CSIT error conditional on observed previous
CSIT is zero. This assumption of imperfect CSIT is suitable to
model the CSIT measurement error or feedback error but can
not capture the CSI quantization error. In contrast, the current
paper only requires that CSIT error is bounded.

II. SIGNAL MODEL AND PROBLEM FORMULATIONS

A. Signal model

Consider a point-to-point MIMO fading channel that op-
erates in slotted time with normalized time slots t 2
{0, 1, 2, . . .}. There are NT antennas at the transmitter and
NR antennas at the receiver. The channel can be modeled as

y(t) = H(t)x(t) + z(t)

where t 2 {0, 1, 2, . . .} is the time index, z(t) 2 CNR is
the additive noise vector, x(t) 2 CNT is the transmitted
signal vector, H(t) 2 CNR⇥NT is the channel matrix, and
y(t) 2 CNR is the received signal vector. Assume that noise
vectors z(t) are independent and identically distributed (i.i.d.)
over time slots t and are normalized circularly symmetric
complex Gaussian random vectors with E[z(t)zH(t)] = INR ,
where INR denotes an NR ⇥ NR identity matrix.1 Assume
that channel matrices H(t) are i.i.d. across time t and have a
fixed but arbitrary probability distribution, possibly one with
correlations between entries of the matrix. Assume there exists

1If the size of the identity matrix is clear, we often simply write I.

a constant B > 0 such that kHkF  B with probability one,
where k · kF denotes the Frobenius norm of matrices.2

Assume that the receiver can track channel matrices H(t)
exactly through training. In symmetric TDD scenarios, it is
reasonable to assume the transmitter has perfect CSIT. In more
general scenarios, the channel matrix H(t) is measured at the
receiver at each slot t, a quantized version eH(t) is created
as a function of H(t), and this quantized version is fed back
to the transmitter with one slot of delay. We assume that the
quantization error is bounded, i.e., there exists � > 0 such that
k eH(t) �H(t)kF  � for all t. Due to the one slot delay, at
slot t the transmitter only knows eH(t�1). Since channels are
i.i.d. over slots, this delayed information is independent of the
current (and unknown) H(t). Remarkably, it turns out that the
outdated information is still useful.

B. Optimal power allocation with perfect CDIT
If the channel matrix is fixed at H and the transmit

covariance is fixed at Q, the MIMO capacity is given by [1]:

log det(I+HQHH
)

where superscript H denotes Hermitian transpose and det(·)
denotes the determinant operator of matrices. If H is random
then the average capacity, formally called the ergodic capacity
[16], is given by EH

⇥
log det(I + HQHH

)

⇤
. We consider

two types of power constraints at the transmitter: An average
power constraint EH[tr(Q)]  ¯P and an instantaneous power
constraint tr(Q)  P , where tr(·) denotes the trace operator
of matrices. The ideal-CSIT problem is to choose Q as a
(possibly random) function of the observed H to maximize
the ergodic capacity subject to power constraints:

max

Q(H)
EH

⇥
log det(I+HQ(H)HH

)

⇤
(1)

s.t. EH[tr(Q(H))]  ¯P , (2)
Q(H) 2 Q, 8H, (3)

where Q is a set that enforces the instantaneous power
constraint:

Q =

�
Q 2 SNT

+ : tr(Q)  P
 

(4)

where SNT
+ denotes the NT ⇥NT positive semidefinite matrix

space. To avoid trivialities it is assumed that P � ¯P . In (1)-(3)
we use notation Q(H) to emphasize that Q can depend on
H, i.e., adaptive to channel realizations.

If the transmitter has no CSIT, the optimal power allocation
problem is different, given as follows.

max

Q
EH

⇥
log det(I+HQHH

)

⇤
(5)

s.t. EH[tr(Q)]  ¯P , (6)
Q 2 Q, (7)

where set Q is defined in (4). Again assume P � ¯P . Since
the instantaneous CSIT is unavailable, the transmit covariance

2A bounded Frobenius norm always holds in the physical world because the
channel attenuates the signal. Particular models such as Rayleigh and Rician
fading violate this assumption in order to have simpler distribution functions.
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cannot adapt to H. By the convexity of this problem and
Jensen’s inequality, a randomized Q can be shown to be
useless. It suffices to consider a constant Q. Since P � ¯P , this
implies the problem is equivalent to a problem that removes
the constraint (6) and that changes the constraint (7) to:

Q 2 eQ = {Q 2 SNT
+ : tr(Q)  ¯P}

The problems (1)-(3) and (5)-(7) are fundamentally different
and have different optimal objective function values. Optimal-
ity for these problems is defined by the channel distribution
information (CDI). In this paper, the problems are solved via
dynamic algorithms that do not require CDI. The algorithms
are different for the two cases, and use different techniques.

C. Linear algebra and matrix derivatives
Recall that if A 2 Cm⇥n and B 2 Cn⇥m then tr(AB) =

tr(BA). This subsection presents additional useful facts about
Frobenius norms and complex matrices. Proofs are given in
[17] for completeness.

Fact 1. For any A,B 2 Cm⇥n and C 2 Cn⇥k we have:
1) kAkF = kAHkF = kAT k = k �AkF .
2) kA+BkF  kAkF + kBkF .
3) kACkF  kAkF kCkF .
4) |tr(AHB)|  kAkF kBkF .

Fact 2. For any A 2 Sn+ we have kAkF  tr(A).

Fact 3 ([18]). The function f : Sn+ ! R defined by f(Q) =

log det(I +HQHH
) is concave and its gradient is given by

rQf(Q) = HH
(I+HQHH

)

�1H, 8Q 2 Sn+.

The next fact is the complex matrix version of the first order
condition for concave functions of real number variables, i.e.,
f(y)  f(x) + f 0

(x)(y � x), 8x, y 2 domf if f is concave.

Fact 4. Let function f(Q) : Sn+ ! R be a concave function
and have gradient rQf(Q) 2 Sn at point Q. Then, f(bQ) 
f(Q) + tr

�
[rQf(Q)]

H
(

bQ�Q)

�
, 8bQ 2 Sn+.

III. IDEAL CSIT CASE

Consider the case of perfect instantaneous CSIT, called
the ideal-CSIT case. The problem to solve is (1)-(3). At the
beginning of each slot t 2 {0, 1, 2, . . .} the channel H(t) is
known and a covariance matrix Q(t) can be chosen based on
this information. This is done without using CDI via the drift-
plus-penalty technique of [7]. For each slot t 2 {0, 1, 2, . . .}
define the reward R(t):

R(t) = log det(I+H(t)Q(t)H(t)H) (8)

The average power constraint (2) is enforced via a virtual
queue Z(t) with Z(0) = 0 and with update:

Z(t+ 1) = max[0, Z(t) + tr(Q(t))� ¯P ]

In the drift-plus-penalty algorithm, every slot t a matrix
Q(t) 2 Q is selected to maximize V R(t) � Z(t)tr(Q(t)),
where V is a positive weight. This results in Algorithm 1
below.

Algorithm 1 Dynamic power allocation with ideal CSIT
Let V > 0 be a constant parameter and Z(0) = 0. At each
time t 2 {0, 1, 2, . . .}, observe H(t) and Z(t). Then do the
following:

• Choose transmit covariance Q(t) 2 Q to maximize:

V log det(I+H(t)Q(t)H(t)H)� Z(t)tr(Q(t))

• Update Z(t+ 1) = max[0, Z(t) + tr(Q(t))� ¯P ].

Define Ropt as the optimal average utility in (1). The value
Ropt depends on the (unknown) distribution for H(t). Fix ✏ >
0 and define V = (P +

¯P )

2/(2✏). A theorem in [7] ensures
that, regardless of the distribution of H(t):

1

t

t�1X

⌧=0

E[R(⌧)] � Ropt � ✏, 8t > 0 (9)

lim

t!1

1

t

t�1X

⌧=0

E[tr(Q(⌧))]  ¯P (10)

This holds for arbitrarily small values of ✏ > 0, and so the
algorithm comes arbitrarily close to optimality. Notice that
Algorithm 1 does not use channel distribution information
(i.e., no CDI). The next subsections show how to solve the
covariance selection problem for choosing Q(t) in Algorithm
1, and shows that the special structure of this MIMO problem
produces a sample path guarantee that is significantly stronger
than (10) and that demonstrates convergence time that is
typically much faster than the time that would be required
to accurately estimate the CDI information.

A. Transmit covariance updates in Algorithm 1

This subsection shows the Q(t) selection in Algorithm 1 can
be easily solved and has an (almost) closed-form solution. The
convex program involved in the transmit covariance update of
Algorithm 1 is in the form

max

Q
log det(I+HQHH

)� Z

V
tr(Q) (11)

s.t. tr(Q)  P (12)
Q 2 SNT

+ (13)

This convex program is similar to the conventional problem
of transmit covariance design with a deterministic channel
H, except that objective (11) has an additional penalty term
�(Z/V )tr(Q). It is well known that, without this penalty term,
the solution is to diagonalize the channel matrix and allocate
power over eigen-modes according to a water-filling technique
[1]. The next theorem shows that the optimal solution to
problem (11)-(13) has a similar structure.

Theorem 1. Consider the SVD HHH = UH⌃U, where U is
a unitary matrix and ⌃ is a diagonal matrix with non-negative
entries �1, . . . ,�NT . Then the optimal solution to (11)-(13) is
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given by Q⇤
= UH⇥⇤U, where ⇥⇤ is a diagonal matrix with

entries ✓⇤1 , . . . , ✓⇤NT
given by:

✓⇤i = max

⇥
0,

1

µ⇤
+ Z/V

� 1

�i

⇤
, 8i 2 {1, . . . , NT },

where µ⇤ is chosen such that
PNT

i=1 ✓
⇤
i  P , µ⇤ � 0 and

µ⇤⇥PNT

i=1 ✓
⇤
i �P

⇤
= 0. The exact µ⇤ can be determined with

complexity O(NT logNT ), described in Algorithm 2.

Proof: See Appendix A.

Algorithm 2 Algorithm to solve problem (11)-(13)

1) Check if
PNT

i=1 max{0, 1
Z/V � 1

�i
}  P holds. If

yes, let µ⇤
= 0 and ✓⇤i = max{0, 1

Z/V � 1
�i
}, 8i 2

{1, 2, . . . , NT } and terminate the algorithm; else, con-
tinue to the next step.

2) Sort all �i,2 {1, 2, . . . , NT } in a decreasing order ⇡
such that �⇡(1) � �⇡(2) � · · · � �⇡(NT ). Define S0 = 0.

3) For i = 1 to NT

• Let Si = Si�1 +
1

�⇡(i)
. Let µ⇤

=

i
Si+P � (Z/V ).

• If µ⇤ � 0, 1
µ⇤+Z/V � 1

�⇡(i)
> 0 and 1

µ⇤+Z/V �
1

�⇡(i+1)
 0, then terminate the loop; else, continue

to the next iteration in the loop.
4) Let ✓⇤i = max

⇥
0, 1

µ⇤+Z/V � 1
�i

⇤
, 8i 2 {1, 2, . . . , NT }

and terminate the algorithm.

The complexity of Algorithm 2 is dominated by the sorting
of all �i in step (2). Recall that the water-filling solution
of power allocation in multiple parallel channels can also be
found by an exact algorithm (see Section 6 in [19]), which is
similar to Algorithm 2. The main difference is that Algorithm
2 has a first step to verify if µ⇤

= 0. This is because unlike
the power allocation in multiple parallel channels, where the
optimal solution always uses full power, the optimal solution
to problem (11)-(13) may not use full power for large Z due
to the penalty term �(Z/V )tr(Q) in objective (11).

B. Deterministic bounds

Recall that kH(t)k2F  B2 for all t, for some constant B.

Lemma 1. In Algorithm 1, if Z(t) � V B2, then Q(t) = 0.

Proof: Suppose the SVD of HH
(t)H(t) is given by

HH
(t)H(t) = UH⌃U, where diagonal matrix ⌃ has non-

negative diagonal entries �1, . . . ,�NT . Note that �i
(a)


tr(HH
(t)H(t))

(b)
 kH(t)k2F  B2 where (a) follows from

tr(HH
(t)H(t)) =

PNT

i=1 �i; and (b) follows from Fact 1. By
Theorem 1, Q(t) = UH⇥⇤U, where ⇥⇤ is a diagonal matrix
with entries ✓⇤1 , . . . , ✓⇤NT

given by ✓⇤i = max

⇥
0, 1

µ⇤+Z(t)/V �
1
�i

⇤
, 8i 2 {1, 2, . . . , NT }, where µ⇤ � 0.

Since �i  B2, 8i 2 {1, 2, . . . , NT }, we know that if
Z(t) � V B2, then 1

µ+Z(t)/V � 1
�i

 0 for all µ � 0 and
hence ✓⇤i = 0, 8i 2 {1, 2, . . . , NT }.

Lemma 2. Let Z(t) be yielded by Algorithm 1. For all slots
t 2 {0, 1, 2, . . .}, we have Z(t)  V B2

+ (P � ¯P ).

Proof: By Lemma 1, Z(t) can not increase if Z(t) �
V B2. If Z(t)  V B2, then Z(t+1) is at most V B2

+(P� ¯P )

by the update equation of Z(t+1) and the instantaneous power
constraint.

C. Performance of Algorithm 1 (ideal-CSIT)

Theorem 2. Fix ✏ > 0 and define V = (P +

¯P )

2/(2✏). Under
Algorithm 1 we have for all t > 0:

1

t

t�1X

⌧=0

E[R(⌧)] � Ropt � ✏

1

t

t�1X

⌧=0

tr(Q(⌧))  ¯P +

B2
(P +

¯P )

2
+ 2✏(P � ¯P )

2✏t

In particular, the sample path time average power is within ✏
of its required constraint ¯P whenever t � ⌦(1/✏2).

Proof: The first inequality is the same as (9). It remains
to prove the second inequality. For all slots ⌧ the Algorithm
1 update for Z(⌧) satisfies:

Z(⌧ + 1) = max[0, Z(⌧) + tr(Q(⌧))� ¯P ]

� Z(⌧) + tr(Q(⌧))� ¯P

Rearranging terms gives: tr(Q(⌧)) � ¯P  Z(⌧ + 1) � Z(⌧).
Fix t > 0. Summing over ⌧ 2 {0, . . . , t� 1} and dividing by
t gives:

1

t

t�1X

⌧=0

tr(Q(⌧))� ¯P  Z(t)� Z(0)

t

 1

t
(V B2

+ (P � ¯P ))

where the last inequality holds because Z(0) = 0 and Z(t) 
V B2

+ (P � ¯P ) by Lemma 2.
Theorem 2 provides a sample path guarantee on average

power, which is much stronger than the gurantee in (10). It
also shows that convergence time to reach an ✏-approximate
solution is O(1/✏2). Typically, this is dramatically more ef-
ficient than the convergence time required to obtain even a
coarse estimate of the joint distribution for the entries of H(t).
Indeed, if each channel entry hij were quantized into 1/�
distinct levels, there would be (1/�)NTNR different possible
(quantized) matrix realizations. Waiting for (1/�)NTNR slots
would at best allow each realization to appear once, which
is still not enough for accurate estimation of the probabilities
associated with each realization. Fortunately, Theorem 2 shows
that such estimation is not needed.

IV. DELAYED AND QUANTIZED CSIT CASE

Consider the case of delayed and quantized CSIT. At
the beginning of each slot t 2 {0, 1, 2, . . .}, channel H(t)
is unknown and only quantized channels of previous slots
eH(⌧), ⌧ 2 {0, 1, . . . , t� 1} are known.
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This is similar to the scenario of online optimization where
the decision maker selects x(t) 2 X at each slot t to maximize
an unknown reward function ft(x) based on the information of
previous reward functions f⌧ (x(⌧)), ⌧ 2 {0, 1, . . . , t�1}. The
goal is to minimize average regret 1

t maxx2X
⇥Pt�1

⌧=0 f⌧ (x)
⇤
�

1
t

Pt�1
⌧=0 f⌧ (x(⌧)). The best known average regret of online

optimization with Lipschitz continuous and convex reward
functions is O(

1p
t
) in [12].

This is different from conventional online optimization
because at each slot t, the rewards of previous slots, i.e.,
R(⌧) = log det(I+H(⌧)Q(⌧)HH

(⌧)), ⌧ 2 {0, 1, . . . , t� 1},
are still unknown due to the fact that the reported channels
eH(⌧) are the quantized versions. Nevertheless, an online
algorithm without using CDIT is developed in Algorithm 3.

Algorithm 3 Dynamic Power Allocation with Delayed and
Quantized CSIT
Let � > 0 be a constant parameter and Q(0) 2 Q be arbitrary.
At each time t 2 {1, 2, . . .}, observe eH(t � 1) and do the
following:

• Let eD(t�1) =

eHH
(t�1)(INR+

eH(t�1)Q(t�1)

eHH
(t�

1))

�1 eH(t� 1). Choose transmit covariance

Q(t) = P eQ
⇥
Q(t� 1) + � eD(t� 1)

⇤
,

where P eQ[·] is the projection onto convex set eQ = {Q 2
SNT
+ : tr(Q)  ¯P}.

Define Q⇤ 2 eQ as an optimal solution to problem (5)-(7),
which depends on the (unknown) distribution for H(t). Define

Ropt
(t) = log det(I+H(t)Q⇤HH

(t))

as the utility at slot t attained by Q⇤.
If the channel is not quantized, i.e., eH(t � 1) = H(t �

1), 8t 2 {1, 2, . . .}, then eD(t� 1) is the gradient of R(t� 1)

at point Q(t � 1). Fix ✏ > 0 and take � = ✏. The results in
[12] ensure that, regardless of the distribution of H(t):

1

t

t�1X

⌧=0

R(⌧) � 1

t

t�1X

⌧=0

Ropt
(⌧)�

¯P

✏t
� NRB4

2

✏, 8t > 0 (14)

1

t

t�1X

⌧=0

tr(Q(⌧))  ¯P , 8t > 0 (15)

The next subsections analyze the performance of Algorithm
3 with quantized channels and shows that the performance
degrades linearly with respect to the quantization error �. If
� = 0, then (14) and (15) are recovered.

A. Transmit Covariance Updates in Algorithm 3

This subsection shows the Q(t) selection in Algorithm 3 can
be easily solved and has an (almost) closed-form solution.

The projection operator involved in Algorithm 3 by defini-
tion is

min

1

2

kQ�Xk2F (16)

s.t. tr(Q)  ¯P (17)
Q 2 SNT

+ (18)

where X = Q(t� 1) + � eD(t� 1) is an Hermitian matrix at
each time t.

Without constraint tr(Q)  ¯P , the projection of Hermitian
matrix X onto the positive semidefinite cone Sn+ is simply
taking the eigenvalue expansion of X and dropping terms as-
sociated with negative eigenvalues (see Section 8.1.1. in [20]).
Work [21] considered the projection onto the intersection of
the positive semidefinite cone Sn+ and an affine subspace
given by {Q : tr(AiQ) = bi, i 2 {1, 2, . . . , p}, tr(BjQ) 
dj , j 2 {1, 2, . . . ,m}} and developed the dual-based iterative
numerical algorithm to calculate the projection. Problem (16)-
(18) is a special case, where the affine subspace is given
by tr(Q)  ¯P , of the projection considered in [21]. Instead
of solving problem (16)-(18) using numerical algorithms,
this subsection shows that problem (16)-(18) has an (almost)
closed-form solution.

Theorem 3. Consider SVD X = UH⌃U, where U is
a unitary matrix and ⌃ is a diagonal matrix with entries
�1, . . . ,�NT . Then the optimal solution to problem (16)-(18)
is given by Q⇤

= UH⇥⇤U, where ⇥⇤ is a diagonal matrix
with entries ✓⇤1 , . . . , ✓⇤NT

given by,

✓⇤i = max[0,�i � µ⇤
], 8i 2 {1, 2, . . . , NT },

where µ⇤ is chosen such that
PNT

i=1 ✓
⇤
i  ¯P , µ⇤ � 0 and

µ⇤⇥PNT

i=1 ✓
⇤
i � ¯P

⇤
= 0. The exact µ⇤ can be determined with

complexity O(NT logNT ), described in Algorithm 4.

Proof: The proof is sketched as follows. First, problem
(16)-(18) is reduced to a simpler convex program with a real
vector variable by characterizing the structure of its optimal
solution. Then, an (almost) closed-form solution to the simpler
convex program is obtained by studying its KKT conditions.
See Appendix B for details.

Algorithm 4 Algorithm to solve problem (16)-(18)

1) Check if
PNT

i=1 max[0,�i]  ¯P holds. If yes, let µ⇤
= 0

and ✓⇤i = max[0,�i], 8i 2 {1, 2, . . . , NT } and terminate
the algorithm; else, continue to the next step.

2) Sort all �i,2 {1, 2, . . . , NT } in a decreasing order ⇡
such that �⇡(1) � �⇡(2) � · · · � �⇡(NT ). Define S0 = 0.

3) For i = 1 to NT

• Let Si = Si�1 + �i. Let µ⇤
=

Si�P̄
i .

• If µ⇤ � 0, �⇡(i) � µ⇤ > 0 and �⇡(i+1) � µ⇤  0,
then terminate the loop; else, continue to the next
iteration in the loop.

4) Let ✓⇤i = max[0,�i � µ⇤
], 8i 2 {1, 2, . . . , NT } and

terminate the algorithm.
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B. Property of eD(t� 1)

Define D(t � 1) = HH
(t � 1)(INR + H(t � 1)Q(t �

1)HH
(t� 1))

�1H(t� 1), which is the gradient of R(t� 1)

at point Q(t�1) and is unknown to the transmitter due to the
unavailability of H(t� 1). The next lemma relates eD(t� 1)

and D(t� 1).

Lemma 3. For all slots t 2 {1, 2, . . .}, we have

1) kD(t� 1)kF 
p
NRB2.

2) kD(t � 1) � eD(t � 1)kF   (�), where  (�) =�p
NRB +

p
NR(B + �) + (B + �)2NR

¯P (2B + �)
�
�

satisfying  (�) ! 0 as � ! 0, i.e.,  (�) 2 O(�).
3) keD(t� 1)kF   (�) +

p
NRB2

Proof: See full version [17] for details.

C. Performance of Algorithm 3

Theorem 4. Fix ✏ > 0 and define � = ✏. Under Algorithm 3,
we have for all t > 0:

1

t

t�1X

⌧=0

R(⌧) � 1

t

t�1X

⌧=0

Ropt
(⌧)�

¯P

✏t
� ( (�) +

p
NRB2

)

2

2

✏

� 2 (�) ¯P

1

t

t�1X

⌧=0

tr(Q(⌧))  ¯P

where  (�) is the constant defined in Lemma 3. In particular,
the sample path time average utility is within ✏ + 2 (�) ¯P of
the optimal time average utility for problem (5)-(7) whenever
t � ⌦(1/✏2).

Proof: The second inequality trivially follows from the
fact that Q(t) 2 eQ, 8t 2 {0, 1, . . .}. It remains to prove
the first inequality. This proof extends the regret analysis of
conventional online convex optimization [12] by considering
inexact gradient eD(t� 1).

For all slots ⌧ 2 {1, 2, . . .}, the transmit covariance update
in Algorithm 3 satisfies:

kQ(⌧)�Q⇤k2F
=kP eQ

⇥
Q(⌧ � 1) + � eD(⌧ � 1)

⇤
�Q⇤k2F

(a)
kQ(⌧ � 1) + � eD(⌧ � 1)�Q⇤k2F
=kQ(⌧ � 1)�Q⇤k2F + 2�tr

� eDH
(⌧ � 1)(Q(⌧ � 1)�Q⇤

)

�

+ �2keD(⌧ � 1)k2F
=kQ(⌧ � 1)�Q⇤k2F + 2�tr

�
DH

(⌧ � 1)(Q(⌧ � 1)�Q⇤
)

�

+ 2�tr
�
(

eD(t� 1)�D(⌧ � 1))

H
(Q(⌧ � 1)�Q⇤

)

�

+ �2keD(⌧ � 1)k2F ,

where (a) follows from the non-expansive property of projec-
tions onto convex sets. Define �(t) = kQ(t + 1) �Q⇤k2F �

kQ(t) � Q⇤k2F . Rearranging terms in the last equation and
dividing by factor 2� implies

tr
�
DH

(⌧ � 1)(Q(⌧ � 1)�Q⇤
)

�

� 1

2�
�(⌧ � 1)� �

2

keD(⌧ � 1)k2F

� tr
�
(

eD(⌧ � 1)�D(⌧ � 1))

H
(Q(⌧ � 1)�Q⇤

)

�
(19)

Define f(Q) = log det(I+H(⌧�1)QHH
(⌧�1)). By Fact 3,

f(·) is concave over eQ. Note that D(t�1) = rQf(Q(t�1))

by Fact 3 and Q⇤ 2 eQ. By Fact 4, we have

f(Q(⌧ � 1))� f(Q⇤
) � tr(DH

(⌧ � 1)(Q(⌧ � 1)�Q⇤
)).
(20)

Note that f(Q(⌧ �1)) = R(⌧ �1) and f(Q⇤
) = Ropt

(⌧ �1).
Combining (19) and (20) yields

R(⌧ � 1)�Ropt
(⌧ � 1)

� 1

2�
�(⌧ � 1)� �

2

keD(⌧ � 1)k2F

� tr
�
(

eD(⌧ � 1)�D(⌧ � 1))

H
(Q(⌧ � 1)�Q⇤

)

�

(a)
� 1

2�
�(⌧ � 1)� �

2

keD(⌧ � 1)k2F

� keD(⌧ � 1)�D(⌧ � 1)kF kQ(⌧ � 1)�Q⇤kF
(b)
� 1

2�
�(⌧ � 1)� �

2

( (�) +
p
NRB

2
)

2 � 2 (�) ¯P

where (a) follows from Fact 1 and (b) follows from Lemma 3
and the fact that kQ(⌧�1)�Q⇤kF  kQ(⌧�1)kF+kQ⇤kF 
tr(Q(⌧ �1))+ tr(Q⇤

)  2

¯P , which is implied by Fact 1, Fact
2 and fact Q(⌧ � 1),Q⇤ 2 eQ. Replacing ⌧ � 1 with ⌧ yields
for all ⌧ 2 {0, 1, . . .}, R(⌧)�Ropt

(⌧) � 1
2��(⌧)� �

2 ( (�)+p
NRB2

)

2 � 2 (�) ¯P .
Fix t > 0. Summing over ⌧ 2 {0, 1, . . . , t � 1}, dividing

by factor t and noting that
Pt�1

⌧=0 �(⌧) is a telescope sum
gives 1

t

Pt�1
⌧=0 R(⌧)� 1

t

Pt�1
⌧=0 R

opt
(⌧) � 1

2�t (kQ(t)�Q⇤kF�
kQ(0)�Q⇤kF )� �

2 ( (�) +
p
NRB2

)

2 � 2 (�) ¯P � � P̄
�t �

�
2 ( (�) +

p
NRB2

)

2 � 2 (�) ¯P , where the last inequality
follows because kQ(0) � Q⇤kF  kQ(0)kF + kQ⇤kF 
tr(Q(0)) + tr(Q⇤

)  2

¯P and kQ(t)�Q⇤kF � 0.
Theorem 4 proves a sample path guarantee on the average

utility. It shows that the convergence time to reach an ✏ +
2 (�) ¯P approximate solution is O(1/✏2). Note that if � = 0,
then equations (14) and (15) are recovered by Theorem 4.

Theorem 4 also isolates the effects of delay and quantiza-
tion. The observation is that the effect of CSIT delay vanishes
as Algorithm 3 runs for a sufficiently long time. In some sense,
delayed but accurate CSIT is almost as good as perfect CDIT.
In contrast, the effect of CSIT quantization does not vanish as
Algorithm 3 runs for a sufficiently long time. The performance
degradation due to quantization scales linearly with respect to
the quantization error since  (�) 2 O(�). Intuitively, this is
reasonable since the power allocation based on quantized CSIT
is actually optimizing another different MIMO system.
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D. Extensions

1) T -Slot Delayed and Quantized CSIT: Thus far, we have
assumed that CSIT is delayed by one slot. In fact, if CSIT
is delayed by T slots, we can modify the update of transmit
covariances in Algorithm 3 as Q(t) = P eQ[Q(t�T )+� eD(t�
T )]. A T -slot version of Theorem 4 can be similarly proven.

2) Algorithm 3 with Time Varying �: Algorithm 3 can
be extended to have time varying step size �(t) =

1p
t

at
time t. The full version [17] proves that such an algorithm
yields 1

t

Pt�1
⌧=0 R(⌧) � 1

t

Pt�1
⌧=0 R

opt
(⌧) � P̄p

t
� 1p

t
( (�) +p

NRB2
)

2�2 (�) ¯P for all t > 0. This shows the convergence
time to an ✏+2 (�) ¯P approximate solution is again O(1/✏2).
However, an advantage of time varying step sizes is the
performance automatically gets improved as the algorithm runs
and there is no need to restart the algorithm with a different
constant step size if a better performance is demanded.

V. SIMULATIONS

Consider a MIMO system where both the transmitter and
the receiver have two antennas. The power constraints are
¯P = 5 and P = 10. The channel has two realizations with
equal probability 0.5, i.e., H1 = 0.5


ej0.84⇡ ej1.58⇡

ej1.83⇡ ej1.97⇡

�
and

H2 =


ej1.31⇡ ej1.69⇡

ej0.07⇡ ej1.86⇡

�
. If the channel is quantized, they

are quantized as eH1 and eH2, respectively. The algorithms
in this paper can be easily applied to examples with infinite
possible outcomes for the channel matrix. This simple example
of two possibilities is considered because an offline optimal
solution based on perfect CDIT can only be computed when
the number of samples is small. 3

Figure 1 compares the performance of Algorithm 1 with
perfect CSIT and the optimal solution to problem (1)-(3). In
the simulation, we take V = 1000.

Figure 2 compares the performance of Algorithm 3 with
one slot delayed and quantized CSIT and the optimal solution
to problem (5)-(7). To study the effect of quantization error,
we consider 3 different quantization levels. Case 1: eH1 =

0.5


ej0.8⇡ ej1.5⇡

ej1.8⇡ ej1.9⇡

�
and eH2 =


ej1.3⇡ ej1.6⇡

ej0⇡ ej1.8⇡

�
; Case

2: eH1 = 0.5


ej⇡ ej1.5⇡

ej2⇡ ej2⇡

�
and eH2 =


ej1.5⇡ ej1.5⇡

ej0⇡ ej2⇡

�
;

Case 3: eH1 = 0.5


1 1

1 1

�
and eH2 =


1 1

1 1

�
. In the

simulation, we take Q(0) = 0 and � = 10

�3. It can be ob-
served that performance becomes worse as CSIT quantization
gets coarser, while the average power constraints are strictly
satisfied even with quantized CSIT.

3This is known as the curse of dimensionality for stochastic optimization
due to the large sample size. That is, even with perfect CDIT, problem (1)-(3)
and problem (5)-(7) can be numerically hard to solve when the sample size of
H is large. In contrast, the dynamic algorithms proposed in this paper can deal
with problems even with an infinite number of samples and the performance
guarantees are independent of the sample size.
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VI. CONCLUSION

This paper considers dynamic power allocation in MIMO
fading systems without CDIT. In the case of ideal CSIT, the
proposed dynamic power policy can approach optimality. In
the case of delayed and quantized CSIT, the proposed dynamic
power allocation policy can achieve O(�) sub-optimality,
where � is the quantization error.

APPENDIX A – PROOF OF THEOREM 1

The proof method is an extension of Section 3.2 in [1],
which gives the structure of the optimal transmit covariance
in deterministic MIMO channels.

Note that log det(I+HQHH
)

(a)
= log det(I+QHHH)

(b)
=

log det(I + QUH⌃U)

(c)
= log det(I + ⌃1/2UQUH⌃1/2

),
where (a) and (c) follows from the elementary identity
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log det(In + AB) = log det(In + BA), 8A,B 2 Cn⇥n;
and (b) follows from the fact that HHH = UH⌃U. Define
eQ = UQUH , which is semidefinite positive if and only if
Q is. Note that tr(eQ) = tr(UQUH

) = tr(Q) by the fact that
tr(AB) = tr(BA), 8A 2 Cm⇥n,B 2 Cn⇥m. Thus, problem
(11)-(13) is equivalent to

max

eQ
log det(I+⌃1/2 eQ⌃1/2

)� Z

V
tr(eQ) (21)

s.t. tr(eQ)  P (22)
eQ 2 SNT

+ (23)

Fact 5 (Hadamard’s Inequality, Theorem 7.8.1 in [22]). For all
A 2 Sn+, det(A) 

Qn
i=1 Aii with equality if A is diagonal.

The next claim can be proven using Hadamard’s inequality.

Claim 1. Problem (21)-(23) has a diagonal optimal solution.

Proof: Suppose problem (21)-(23) has a non-diagonal
optimal solution given by matrix eQ. Consider a diagonal
matrix bQ whose entries are identical to the diagonal entries
of eQ. Note that tr(bQ) = tr(eQ). To show bQ is a solu-
tion no worse than eQ, it suffices to show that log det(I +
⌃1/2 bQ⌃1/2

) � log det(I+⌃1/2 eQ⌃1/2
). This is true becase

det(I + ⌃1/2 bQ⌃1/2
) =

QNT

i=1(1 +

bQii�i) =

QNT

i=1(1 +

eQii�i) � det(I + ⌃1/2 eQ⌃1/2
), where the last inequality

follows from Hadamard’s inequality. Thus, bQ is a solution
no worse than eQ and hence optimal.

By Claim 1, we can consider eQ = ⇥ =

diag(✓1, ✓2, . . . , ✓NT ) and problem (21)-(23) is equivalent to

max

NTX

i=1

log(1 + ✓i�i)�
Z

V

NTX

i=1

✓i (24)

s.t.
NTX

i=1

✓i  P (25)

✓i � 0, 8i 2 {1, 2, . . . , NT } (26)

Note that problem (24)-(26) satisfies Slater’s condition. So
the optimal solution to problem (24)-(26) is characterized by
KKT conditions [20]. The remaining part is similar to the
derivation of the water-filling solution of power allocation
in parallel channels, e.g., the proof of Example 5.2 in [20].
Introducing Lagrange multipliers µ 2 R+ for inequality
constraint

PNT

i=1 ✓i  P and ⌫ = [⌫1, . . . , ⌫NT ]
T 2 RNT

+

for inequality constraints ✓i � 0, i 2 {1, 2, . . . , NT }. Let
✓⇤

= [✓⇤1 , . . . , ✓
⇤
NT

]

T and (µ⇤,⌫⇤
) be any primal and

dual optimal points with zero duality gap. By KKT con-
ditions, we have � �i

1+✓⇤
i �i

+ Z/V + µ⇤ � ⌫⇤i = 0, 8i 2
{1, 2, . . . , NT };

PNT

i=1 ✓
⇤
i  P ;µ⇤ � 0;µ⇤⇥PNT

i=1 ✓
⇤
i �

P
⇤

= 0; ✓⇤i � 0, 8i 2 {1, 2, . . . , NT }; ⌫⇤i � 0, 8i 2
{1, 2, . . . , NT }; ⌫⇤i ✓⇤i = 0, 8i 2 {1, 2, . . . , NT }.

Eliminating ⌫⇤i , 8i 2 {1, 2, . . . , NT } in all equations yields
µ⇤

+ Z/V � �i
1+✓⇤

i �i
, 8i 2 {1, 2, . . . , NT };

PNT

i=1 ✓
⇤
i 

P ;µ⇤ � 0;µ⇤⇥PNT

i=1 ✓
⇤
i � P

⇤
= 0; ✓⇤i � 0, 8i 2

{1, 2, . . . , NT }; (µ⇤
+ Z/V � �i

1+✓⇤
i �i

)✓⇤i = 0, 8i 2
{1, 2, . . . , NT }.

For all i 2 {1, 2, . . . , NT }, we consider µ⇤
+ Z/V < �i

and µ⇤
+ Z/V � �i separately:

1) If µ⇤
+Z/V < �i, then µ⇤

+Z/V � �i
1+✓⇤

i �i
holds only

when ✓⇤i > 0, which by (µ⇤
+Z/V � �i

1+✓⇤
i �i

)✓⇤i implies
that µ⇤

+ Z/V � �i
1+✓⇤

i �i
= 0, i.e., ✓⇤i =

1
µ⇤+Z/V � 1

�i
.

2) If µ⇤
+ Z/V � �i, then ✓⇤i > 0 is impossible, because

✓⇤i > 0 implies that µ⇤
+ Z/V � �i

1+✓⇤
i �i

> 0, which
together with ✓⇤i > 0 contradict the slackness condition
(µ⇤

+ Z/V � �i
1+✓⇤

i �i
)✓⇤i = 0. Thus, if µ⇤

+ Z/V � �i,
we must have ✓⇤i = 0.

Summarizing both cases, we have ✓⇤i = max

⇥
0, 1

µ⇤+Z/V �
1
�i

⇤
, 8i 2 {1, 2, . . . , NT }, where µ⇤ is chosen such thatPn

i=1 ✓
⇤
i  P , µ⇤ � 0 and µ⇤⇥PNT

i=1 ✓
⇤
i � P

⇤
= 0.

To find such µ⇤, we first check if µ⇤
= 0. If µ⇤

= 0

is true, the slackness condition µ⇤⇥PNT

i=1 ✓
⇤
i � P

⇤
= 0 is

guaranteed to hold and we need to further require
PNT

i=1 ✓
⇤
i =PNT

i=1 max

⇥
0, 1

µ⇤+Z/V � 1
�i

⇤
 P . Thus µ⇤

= 0 if and only
if
PNT

i=1 max

⇥
0, 1

Z/V � 1
�i

⇤
 P . Thus, Algorithm 2 checks

if
PNT

i=1 max

⇥
0, 1

Z/V � 1
�i

⇤
 P holds at the first step and if

this is true, then we conclude µ⇤
= 0 and we are done!

Otherwise, we know µ⇤ > 0. By the slackness condi-
tion µ⇤⇥PNT

i=1 ✓
⇤
i � P

⇤
= 0, we must have

PNT

i=1 ✓
⇤
i =PNT

i=1 max

⇥
0, 1

µ⇤+Z/V � 1
�i

⇤
= P . To find µ⇤ > 0 such that

PNT

i=1 max

⇥
0, 1

µ⇤+Z/V � 1
�i

⇤
= P , we could apply a bisection

search by noting that all ✓⇤i are decreasing with respect to µ⇤.
Another algorithm of finding µ⇤ is inspired by the obser-

vation that if �j � �k, 8j, k 2 {1, 2, . . . , NT }, then ✓⇤j � ✓⇤k.
Thus, we first sort all �i in a decreasing order, say ⇡ is the
permutation such that �⇡(1) � �⇡(2) � · · · � �⇡(NT ); and then
sequentially check if i 2 {1, 2, . . . , NT } is the index such that
�⇡(i) � µ⇤ � 0 and �⇡(i+1) � µ⇤  0. To check this, we
first assume i is indeed such an index and solve the equationPi

j=1

⇥
1

µ⇤+Z/V � 1
�⇡(j)

⇤
= P to obtain µ⇤; (Note that in

Algorithm 2, to avoid recalculating the partial sum
Pi

j=1
1

�⇡(j)

for each i, we introduce the parameter Si =
Pi

j=1
1

�⇡(j)
and

update Si incrementally. By doing this, the complexity of each
iteration in the loop is only O(1).) then verify the assumption
by checking if 1

µ⇤+Z/V � 1
�⇡(i)

� 0 and 1
µ⇤+Z/V � 1

�⇡(i+1)
 0.

This algorithm is described in Algorithm 2.

APPENDIX B – PROOF OF THEOREM 3

Claim 2. If b⇥ is an optimal solution to the following convex
program:

min

1

2

k⇥�⌃k2F (27)

s.t. tr(⇥)  ¯P (28)
⇥ 2 SNT

+ (29)

then bQ = UH b⇥U is an optimal solution to problem (16)-(18).
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Proof: This claim can be proven by contradiction. Let
b⇥ be an optimal solution to convex program (27)-(29) and
define bQ = UH b⇥U. Assume that there exists eQ 2 SNT

+

such that eQ 6= bQ and is a solution to problem (16)-(18) that
is strictly better than bQ. Consider e⇥ = UeQUH and reach
a contradiction by showing e⇥ is strictly better than b⇥ as
follows:

Note that tr( e⇥) = tr(UeQUH
) = tr(eQ)  ¯P , where the last

inequality follows from the assumption that eQ is solution to
problem (16)-(18). Also note that e⇥ 2 SNT

+ since eQ 2 SNT
+ .

Thus, e⇥ is feasible to problem (27)-(29).
Note that k e⇥ �⌃kF

(a)
= kUH e⇥U �UH⌃UkF

(b)
= keQ �

XkF
(c)
< kbQ�XkF

(d)
= kUbQUH�UXUHkF

(e)
= k b⇥�⌃kF ,

where (a) and (d) follow from the fact Frobenius norm is
unitary invariant4; (b) follows from the fact that e⇥ = UeQUH

and X = UH⌃U; (c) follows from the fact that eQ is strictly
better than bQ; and (e) follows from the fact that bQ = UH b⇥U
and X = UH⌃U. Thus, e⇥ is strictly better than b⇥. A
contradiction!

Claim 3. The optimal solution to problem (27)-(29) must be
a diagonal matrix.

Proof: This claim can be proven by contradiction. As-
sume that problem (27)-(29) has an optimal solution e⇥ that is
not diagonal. Since e⇥ is positive semidefinite, all the diagonal
entries of e⇥ are non-negative. Define b⇥ as a diagonal matrix
whose the i-th diagonal entry is equal to the i-th diagonal entry
of e⇥ for all i 2 {1, 2, . . . , NT }. Note that tr( b⇥) = tr( e⇥)  P
and b⇥ 2 Sn+. Thus, b⇥ is feasible to problem (27)-(29). Note
that k b⇥�⌃kF < k e⇥�⌃kF since ⌃ is diagonal. Thus, b⇥ is a
solution strictly better than e⇥. A contradiction! So the optimal
solution to problem (27)-(29) must be a diagonal matrix.

By the above two claims, it suffices to assume that the
optimal solution to problem (16)-(18) has the structure ˆQ =

UH⇥U, where ⇥ is a matrix with non-negative entries. To
solve problem (16)-(18), it suffices to consider the following
convex program.

min

1

2

NTX

i=1

(✓i � �i)
2 (30)

s.t.
NTX

i=1

✓i  ¯P (31)

✓i � 0, 8i 2 {1, 2, . . . , NT } (32)

Note that problem (30)-(32) satisfies Slater’s condition. So
the optimal solution to problem (30)-(32) is characterized by
KKT conditions [20]. The remaining part is similar to the
proof of Theorem 1 and can be found in the full version [17].
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