
ON THE COMPUTATION AND COMMUNICATION COMPLEXITY OF
PARALLEL SGD WITH DYNAMIC BATCH SIZES FOR STOCHASTIC

NON-CONVEX OPTIMIZATION
{ HAO YU, RONG JIN}

MACHINE INTELLIGENCE TECHNOLOGY LAB, ALIBABA GROUP (US) INC, BELLEVUE, WA

1.STOCHASTIC NON-CONVEX OPT
• Non-convex stochastic optimization

min
x∈Rm

f(x)
∆
= Eζ∼D[F (x; ζ)]

• Typical applications: training deep neural networks

• Mini-batch SGD used in practice

xt+1 = xt − γ
1

B

B∑
i=1

∇F (xt; ζi)

• Effects of batch size B in SGD
– Single node case: Larger B improves the utilization of

computing hardware.

– Data parallel training: Larger B decreases # of aggrega-
tion/communication rounds when Stochastic First-order
Oracle (SFO) budget is given.

• Should we always choose B as large as possible?

– As B increases, mini-batch SGD is more similar to GD.

– GD has exponential convergence for strongly convex opt.
Does this suggest GD is preferred?

– No! when SFO budget is given.

• SGD with B = 1 has better SFO convergence than GD
[Bottou&Bousquet’08] [Bottou et. al.’18].

2. PARALLEL SGD WITH DYNAMIC BS
• Complexity of N node parallel SGD with fixed small BS

– Strongly convex case: O(1/(NT )) SFO convergence with
O(T ) comm rounds

– Non-convex case: O(1/
√
NT ) SFO convergence with

O(T ) comm rounds

• This paper explores using dynamic batch sizes in parallel
SGD to achieve same SFO convergence with less comm.

3. NON-CONVEX UNDER PL
Polyak-Lojasiewicz (P-L) condition

1
2‖∇f(x)‖2 ≥ µ(f(x)− f∗),∀x

• Strongly convex functions satisfy P-L condition.
• CR-PSGD: parallel SGD with exponentially increasing BS

Alg1: CR-PSGD (f,N, T,x1, B1, ρ, γ)

1: Input: N , T , x1 ∈ Rm, γ , B1 and ρ > 1.
2: Initialize t = 1
3: while

∑t
τ=1Bτ ≤ T do

4: Each worker obtains individual batch stochastic
gradient average ḡt,i = 1

Bt

∑Bt

j=1 F (xt; ζi,j).
5: Each worker aggregates all ḡt,i to compute

average ḡt = 1
N

∑N
i=1 ḡt,i.

6: Each worker updates in parallel via:
xt+1 = xt − γḡt.

7: Set batch size Bt+1 = bρtB1c.
8: Update t← t+ 1.
9: end while

10: Return: xt

4. GENERAL NON-CONVEX
• For general non-convex without PL, we have a new

catalyst-like algorithm:

Alg2: CR-PSGD-Catalyst (f,N, T,y0, B1, ρ, γ)

1: Input: N , T , θ, y0 ∈ Rm, γ , B1 and ρ > 1.
2: Initialize y(0) = y0 and k = 1.
3: while k ≤ b

√
NT c do

4: Define hθ(x;y(k−1))
∆
= f(x) + θ

2‖x− y(k−1)‖2 .
5: Update

y(k) =
CR-PSGD(hθ(·;y(k−1)), N, b

√
T/Nc,y(k−1), B1, ρ, γ)

6: Update k ← k + 1.
7: end while

• Like “catalyst acceleration" proposed in [Lin et al.’15] [Pa-
quette et al.’18], our CR-PSGD-Catalyst uses a proximal
point outer-loop inside which CR-PSGD is called.

5. PERFORMANCE ANALYSIS
• Non-Convex under PL:

– CR-PSGD has O(1/(NT )) SFO convergence with
O(log T ) comm rounds

– Compared with parallel SGD, same SFO convergence but
less comm (v.s. O(T ))

– Strongly convex special case: tie with best known
O(1/(NT )) SFO with O(log T ) comm attained by local
SGD [Stich’18]

• General Non-Convex:

– CR-PSGD-Catalyst has O(1/
√
NT ) SFO convergence

with O(
√
NT log(T/N)) comm rounds

– Better than parallel SGD with O(1/
√
NT ) SFO conver-

gence and O(T ) comm; or parallel restarted SGD (local
SGD for non-convex) with O(1/

√
NT ) SFO convergence

and O(N3/4T 3/4) comm [Yu et al.’18].

6. EXPERIMENTS
• Distributed Logistic Regression (N = 10)

• Train ResNet20 over CIFAR10 (N = 8)


