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Abstract—This paper considers a base station that delivers
packets to multiple receivers through a sequence of coded
transmissions. All receivers overhear the same transmissions.
Each receiver may already have some of the packets as side
information, and requests another subset of the packets. This
problem is known as the index coding problem and can be
represented by a bipartite digraph. An integer linear program is
developed that provides a lower bound on the minimum number
of transmissions required for any coding algorithm. Conversely,
its linear programming relaxation is shown to provide an upper
bound that is achievable by a simple form of vector linear
coding. Thus, the information theoretic optimum is bounded
by the integrality gap between the integer program and its
linear relaxation. In the special case when the digraph has a
planar structure, the integrality gap is shown to be zero, so that
exact optimality is achieved. Finally, for non-planar problems,
an enhanced integer program is constructed that provides a
smaller integrality gap. The dual of this problem corresponds to a
more sophisticated partial clique coding strategy that time-shares
between Reed-Solomon erasure codes. This work illuminates the
relationship between index coding, duality, and integrality gaps
between integer programs and their linear relaxations.

I. INTRODUCTION

Consider a noiseless wireless system with N receivers, W
independent packets of the same size, and a single broadcast
station. The broadcast station has all packets. Each receiver has
a subset of the packets as side information, but desires another
(disjoint) subset of the packets. The broadcast station must
deliver the packets to their intended receivers. To this end, it
makes a sequence of (possibly coded) transmissions that are
overheard by all receivers. The goal is to find a coding scheme
with the minimum number of transmissions (clearance time)
such that each user is able to decode its demanded packets.
This problem was introduced by Birk and Kol in [1], [2] and
is known as the index coding problem.

The formulation of the index coding problem is simple,
elegant and captures the essence of broadcasting with side
information. However, it still seems to be intractable. The first
index coding problem investigated by Birk and Kol considers
only the case of unicast packets and can be represented as a
directed side information graph. Work by Bar-Yossef et. al. in
[3] shows that the performance of the best scalar linear code is
equal to the graph parameter minrank of the side information
graph. However, computing the minrank of a given graph is
NP-hard [4]. Further, it is known that restricting to scalar linear
codes is generally sub-optimal [5], [6].
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One branch of research on index coding aims to find tight
performance bounds. Work in [3] shows that if the index
coding problem has an undirected side information graph
(such as when it has symmetric demands) then the minrank is
lower-bounded by the independence number of the graph, and
upper-bounded by the clique cover number. For the unicast
index coding problem, work in [3] shows that the optimal
clearance time (with respect to any scalar, vector or non-linear
code) is lower-bounded by the maximum acyclic subgraph of
the side information graph. Work in [7] generalizes this to
the multi-cast case using a directed bipartite graph. It shows
that the optimum of the general problem is lower-bounded
by the maximum acyclic subgraph induced by deletions of
packet vertices, user-vertices and packet-to-user arcs. In [8], a
sequence of linear programs is proposed to bound the optimal
clearance time.

Another branch of research on index coding focuses on
studying the performance of specific codes and specific graph
structures. Work in [5] shows that vector linear codes can
have strictly better performance compared with scalar linear
codes. Work in [6] demonstrates that non-linear codes can
outperform both scalar and vector linear codes. Instead of
finding the minimum clearance time, Chaudhry et. al. in [9]
consider the problem of maximizing the total number of saved
transmissions by exploiting a specific code structure together
with graph theory algorithms.

This paper studies index coding from a perspective of
optimization and duality. It illustrates the inherent duality
between the information theoretical lower bound in [7] and
the performance of specific codes. Section II extends the
bipartite digraph representation of the problem to a weighted
bipartite digraph. Section III uses this new graph structure
to develop an integer linear program that finds the tightest
lower bound given by [7]. Section IV considers the linear
programming (LP) relaxation of the integer program, and
shows that the dual problem of this relaxation corresponds
to a simple form of vector linear codes, called vector cyclic
codes. It follows that the information theoretic optimum is
bounded by the integrality gap between the integer program
and its LP relaxation. Section V shows that in the special case
when the bipartite digraph is planar, the integrality gap is zero.
In this case, optimality is achieved by a scalar cyclic code.
Section VI considers a different representation of the original
integer program that yields a smaller integrality gap. The dual
problem of its LP relaxation leads to a more sophisticated
partial clique coding strategy that time-shares between Reed-
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Solomon erasure codes. The smaller integrality gap ensures
that these codes are closer to the lower bound. These results
provide new insight on the index coding problem and suggest
that good codes can be found by exploring the LP relaxations
of the tightest lower bound problem.

II. THE WEIGHTED BIPARTITE DIGRAPH

There are N receivers, also called users. Let U =
{u1, . . . , uN} be the set of users. Assume there are W total
packets, labeled {q1, . . . , qW }. For each m ∈ {1, . . . ,W},
define Sm as the set of users in U that already have packet
qm as side information, and define Dm as the set of users in U
that demand packet qm. Without loss of generality, assume that
each packet is demanded by at least one user (else, that packet
can be eliminated). Thus, the demand set Dm is non-empty for
all m ∈ {1, . . . ,W}. On the other hand, the side information
sets Sm can be empty. Indeed, the set Sm is empty if and only
if no user has packet qm as side information. It is reasonable to
assume that the set of users that demand a packet is disjoint
from the set of users that already have that packet as side
information, so that Sm ∩ Dm = ∅ for all m ∈ {1, . . . ,W}.

This index coding problem is represented by a bipartite
directed graph in [7], [10], where user vertices are on the left
of the graph, packet vertices are on the right, and the Sm and
Dm sets are represented by directed arcs. A directed graph is
also called a digraph. It is useful to extend this representation
to a weighted bipartite digraph as follows: Two packets qk and
qm are said to have the same type if Sk = Sm and Dk = Dm.
That is, two packets have the same type if they have the same
side information and demand sets.

Let M be the number of packet types, and let P =
{p1, . . . , pM} be the set of types. The index coding problem
can be represented by a weighted bipartite digraph G =
(U ,P,A,WP) as follows: Let U be the set of vertices on
the left side of the graph and let P be the set of vertices on
the right side of the graph (see Fig. 1). The arc set A has a
user-to-packet arc (un, pm) if and only if user un ∈ U has
all packets of type pm. The arc set A has a packet-to-user
arc (pm, un) if and only if user un ∈ U demands all packets
of type pm. Finally, define WP as the set of integral weights
associated with packet vertices in P . The weight wpm ∈ WP
of packet vertex pm ∈ P is equal to the number of packets
of type pm. Thus, the total number of packets W satisfies
W =

∑M
m=1 wpm .

A packet is said to be a unicast packet if it is demanded
by only one user, and is said to be a multicast packet if it is
demanded by two or more users. An index coding problem
is said to be unicast if all packets are unicast packets. The
first index coding problem introduced by Birk and Kol in
[1] was a unicast problem. The current paper also focuses
exclusively on the unicast case. Figure 1 shows an example
of the weighted bipartite digraph representation for a unicast
index coding problem with 3 user vertices and 3 packet types.
In this example, packet types p1, p2, p3 are demanded by users
u1, u2, u3, respectively, so that D1 = {u1}, D2 = {u2},

D3 = {u3}. Furthermore, the side information sets are as
follows:
• Packet type p1 is contained as side information by users

in the set S1 = {u2, u3}.
• Packet type p2 is contained as side information by the

user in the set S2 = {u3}.
• Packet type p3 is contained as side information by the

user in the set S3 = {u1}.

u1#

u2#

u3#

p1#

p2#

p3#

w1=3#

w2=1#

w3=2#

Fig. 1. The bipartite digraph representation of a unicast index coding problem
with 3 user vertices and 3 packet type vertices.

The index coding problem with graph G = (U ,P,A,WP) can
equally represent a system with M variable size packets, where
wpm is the (integer) size of packet pm. With this interpretation,
each packet type represents a single packet. Thus, this paper
often refers to packet type pm as packet pm.

III. THE ACYCLIC SUBGRAPH BOUND AND ITS LP
RELAXATION

The following definitions from graph theory are useful. A
sequence of vertices {s1, s2, . . . , sK} of a general digraph is
defined as a cycle if (si, si+1) ∈ A for all i ∈ {1, 2, . . . ,K −
1}, all vertices in {s1, s2, . . . , sK−1} are distinct, and s1 =
sK . A digraph is acyclic if it contains no cycle. A set of
vertices is called a feedback vertex set if the removal of
vertices in this set leaves an acyclic digraph. In a vertex-
weighted digraph, the feedback vertex set with the minimum
sum weight is called the minimum feedback vertex set.

For the weighted bipartite digraph G = (U ,P,A,WP) (as
defined in the previous section), there exists a subset Pfd ⊆ P
such that the removal of vertices in Pfd and all the associated
packet-to-user arcs and user-to-packet arcs leaves an acyclic
subgraph. In this case, Pfd is called a feedback packet vertex
set. A trivial feedback packet vertex set is Pfd = P and the
corresponding acyclic subgraph has no packet vertex. This
trivial feedback packet vertex set has weight W , since the sum
weight of all packet vertices is W . It is often possible to find
a feedback packet vertex set with sum weight smaller than W .
The feedback packet vertex set with the minimum sum weight
is called the minimum feedback packet vertex set. The acyclic
subgraph induced by the deletion of the minimum feedback
packet vertex set is called the maximum acyclic subgraph.
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Assume that each transmission from the base station sends
a number of bits equal to the number of bits in each of the
fixed length packets. It is trivial to satisfy all demands with
W transmissions, where each of the W packets is successively
transmitted without coding. However, coding can often be used
to reduce the number of transmissions. Let Tmin(G) represent
the minimum number of transmissions required to deliver all
packets to their intended users for an index coding problem
defined by the weighted bipartite digraph G. The value Tmin(G)
considers all possible coding strategies. A theorem in [7]
provides an information theoretic lower bound on Tmin(G).
While the theorem holds for general (possibly multicast) index
coding problems, this paper uses it in the unicast case.

Theorem 1 (Theorem 1 and Lemma 1 in [7]): Consider an
index coding problem G = (U ,P,A,WP). Let Pfd ⊆ P be a
feedback packet vertex set and let G′ be the acyclic subgraph
induced by the deletion of Pfd. If

∑
pm∈G′ wpm = W ′, then

Tmin(G) ≥W ′.
Suppose the largest cycle in digraph G involves L packet

vertices. Define the set of all cycles in G as C =
⋃L
i=1 Ci,

where Ci, i = 2, . . . , L is the set of all cycles involving i
packet vertices. These cycles can possibly overlap, i.e., some
of them can share common vertices. The number of cycles
can possibly be exponential in the number of vertices of the
graph. The problem of identifying the tightest lower bound
provided by Theorem 1 can be formulated as an integer linear
programming (ILP) problem as below:

(P1)

max
xm,m=1,...,M

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≤ i− 1,

∀Ci ∈ Ci, i = 2, . . . , L

xm ∈ {0, 1}, m = 1, . . . ,M

where xm ∈ {0, 1},m = 1, . . . ,M indicates if packet
vertex pm remains in the acyclic subgraph, objective function∑M
m=1 xmwpm is the sum weight of the acyclic subgraph,

1{pm∈Ci} is the indicator function which equals one if and
only if packet vertex pm participates in cycle Ci ∈ Ci, and∑M
m=1 xm1{pm∈Ci} ≤ i − 1 is the constraint that for each

cycle Ci ∈ Ci, at most i − 1 packet vertices remains in the
acyclic subgraph. This problem finds the maximum packet
weighted acyclic subgraph formed by packet vertex deletion.

The integer constraints of the above problem can be con-
vexified to form the following linear programming (LP) re-
laxation:

(P1′)

max
xm,m=1,...,M

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≤ i− 1,

∀Ci ∈ Ci, i = 2, . . . , L

0 ≤ xm ≤ 1, m = 1, . . . ,M

The only difference between problem (P1) and its relaxation
(P1′) is that the constraints xm ∈ {0, 1} are changed to 0 ≤
xm ≤ 1.

Define val(P1) as the optimal objective function value of
the integer program (P1), being the size of the maximum
acyclic subgraph. Theorem 1 implies that val(P1) ≤ Tmin(G).
The optimal objective function value for the relaxation (P1′)
can be written as val(P1) + gap(P1′,P1), where gap(P1′,P1)
is the integrality gap between the LP relaxation (P1′) and
the integer program (P1). Since the relaxation (P1′) has less
restrictive constraints, the value of gap(P1′,P1) is always non-
negative. The next section proves constructively that:

val(P1) ≤ Tmin(G) ≤ val(P1) + gap(P1′,P1)

Thus, the difference between the minimum clearance time
and the maximum acyclic subgraph bound is bounded by the
integrality gap gap(P1′,P1). Furthermore, Section V shows
that gap(P1′,P1) = 0 in special cases when the digraph G is
planar.

IV. CYCLIC CODES AND LINEAR PROGRAMMING
DUALITY

Inspired by the observation that the lower bound in Theorem
1 is closely connected with cycles in graph G, this section
considers cyclic codes that exploit cycles in G. It is shown
that the problem of finding the optimal cyclic code is the dual
problem of the LP relaxation (P1′). Thus, the performance gap
between the optimal cyclic code and the optimal index code
is ultimately bounded by the integrality gap gap(P1′,P1).

A. Cyclic Codes

Suppose there exists a cycle in G that involves K
users {u1, u2, . . . , uK} and K packets of the same size
{q1, q2, . . . , qK}. In this cycle, user u1 has qK and demands
q1, user u2 has q1 and demands q2, user u3 has q2 and
demands q3, and so on. If the weight of each packet node
is identically one, a K-cycle coding action can deliver all K
packets by transmitting Zi = qi + qi+1, i = 1, . . . ,K − 1
with K − 1 transmissions, where addition is the mod-2
summation of each bit in both packets. After transmissions,
user ui ∈ {u2, . . . , uK} can decode packet qi by performing
qi−1 +Zi−1 = qi−1 +(qi−1 +qi) = qi. At the same time, user
u1 can decode packet q1 by performing:

Z1 + . . .+ ZK−1 + qK

= (q1 + q2) + (q2 + q3) + . . .+ (qK−1 + qK) + qK

= q1.

The linear index code of G is said to be cyclic if it uses a
sequence of coding actions that involve only cyclic coding
actions and direct broadcasts without coding. Linear codes
can be further categorized into scalar linear codes and vector
linear codes according to whether the transmitted message is
a linear combination of the original packets or the subpackets
obtained by subdivisions. In scalar linear codes, each packet is
considered as an element of a finite field and the transmitted
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message is a linear combination of packets over that field. In
vector linear codes, each packet is assumed to be sufficiently
large and can be divided into many smaller subpackets and
the transmitted message is a linear combination of these
subpackets instead of the original packets. The problem of
finding the optimal scalar cyclic code to clear G can be
formulated as an ILP problem as below:

(P2)

min
yCi
∀Ci∈Ci,

i=2,...,L;
ym,m=1,...,M

L∑
i=2

∑
Ci∈Ci

yCi
(i− 1) +

M∑
m=1

ym

s.t. ym +

L∑
i=2

∑
Ci∈Ci

yCi
1{pm∈Ci} ≥ wpm ,

m = 1, . . . ,M

yCi
∈ Z+, ∀Ci ∈ Ci, i = 2, . . . , L

ym ∈ Z+, m = 1, . . . ,M

where yCi
is the number of cycle codes over each cycle

Ci ∈ Ci, i = 2, . . . , L, ym is the number of direct broadcasts
over each packet vertex pm,m = 1, . . . ,M , objective function∑L
i=2

∑
Ci∈Ci yCi

(i − 1) +
∑M
m=1 ym is the total number of

transmissions, and ym +
∑L
i=2

∑
Ci∈Ci yCi1{pm∈Ci} ≥ wpm

is the constraint that all the wpm packets represented by
packet vertex pm are cleared by either cycle codes or direct
broadcasts.

The LP relaxation of integer program (P2) is below:

(P2′)

min
yCi

,∀Ci∈Ci,
i=2,...,L;

ym,m=1,...,M

L∑
i=2

∑
Ci∈Ci

yCi(i− 1) +

M∑
m=1

ym

s.t. ym +

L∑
i=2

∑
Ci∈Ci

yCi
1{pm∈Ci} ≥ wpm ,

m = 1, . . . ,M

yCi ≥ 0, ∀Ci ∈ Ci, i = 2, . . . , L

ym ≥ 0, m = 1, . . . ,M

The only difference between the above problem and the orig-
inal problem (P2) is that the constraints that yCi and ym are
non-negative integral are replaced by the relaxed constraints
that yCi

≥ 0 and ym ≥ 0.
Since all the parameters in the linear constraints of (P2′) are

integers, an optimal solution can be found that has all variables
equal to rational numbers. Let an optimal solution of (P2′) be
y∗Ci

,∀Ci ∈ Ci, i = 2, . . . , L; y∗m,m = 1, . . . ,M , and assume
these values are all rational numbers. The optimal vector cyclic
code can be constructed as follows. First, one can find an
integer θ such that θy∗Ci

,∀Ci ∈ Ci, i = 2, . . . , L; θy∗m,m =
1, . . . ,M are all integers. Next, divide each packet into θ
subpackets. After the subdivision, a single cyclic coding action
over a cycle Ci is no longer the linear combination of packets
but a linear combination of subpackets. Further, a single
(uncoded) direct broadcast from a packet vertex pm is no
longer the broadcast of one packet but one subpacket. Then,

the optimal vector cyclic code performs θy∗Ci
cyclic coding

actions over each cycle ∀Ci ∈ Ci, i = 2, . . . , L and broadcasts
θy∗m subpackets over each packet vertex pm,m = 1, . . . ,M .

Define gap(P2,P2′) as the non-negative integrality gap
between integer program (P2) and its LP relaxation (P2′). Let
Tcyclic(G) and T ′cyclic(G) be the clearance time attained by the
optimal vector cyclic code and the optimal scalar cyclic code,
respectively. Then Tcyclic(G)− T ′cyclic(G) = gap(P2,P2′).

B. Duality Between Lower Bounds and Cyclic Codes

Lemma 1: The LP relaxations (P1′) and (P2′) form a
primal-dual linear programming pair. In particular, the vector
cyclic code1 associated with problem (P2′) achieves a clear-
ance time of val(P1) + gap(P1′,P1).

Proof: The Lagrangian function of (P2′)
can be written as L(yCi

, ym, λm, µCi
, µm) =∑L

i=2

∑
Ci∈Ci yCi

(i − 1) +
∑M
m=1 ym +

∑M
m=1 λm

[
wpm −

ym−
∑L
i=2

∑
Ci∈Ci yCi

1{pm∈Ci}
]
−
∑L
i=2

∑
Ci∈Ci µCi

yCi
−∑M

m=1 µmym =
∑M
m=1 λmwpm +

∑L
i=2

∑
Ci∈Ci yCi

[
(i−1)−∑M

m=1 λm1{pm∈Ci}−µCi

]
+
∑M
m=1 ym[1−λm−µm], where

λm ≥ 0,m = 1, . . . ,M ; µCi ≥ 0,∀Ci ∈ Ci, i = 2, . . . , L and
µm ≥ 0,m = 1, . . . ,M .

The dual problem of (P2′) is defined as:

max
λm≥0,m=1,...,M ;

µCi
≥0,

∀Ci∈Ci,i=2,...,L;
µm≥0,m=1,...,M

min
yCi
∈R,

∀Ci∈Ci,i=2,...,L;
ym∈R,m=1,...,M

L(yCi
, ym, λm, µCi

, µm)

Note that,

min
yCi
∈R,∀Ci∈Ci,i=2,...,L
ym∈R,m=1,...,M

L(yCi , ym, λm, µCi , µm)

=


∑M
m=1 λmwpm if

(i−1)−
∑M

m=1 λm1{pm∈Ci}−µCi
=0,

∀Ci∈Ci,i=2,...,L;
1−λm−µm=0,m=1,...,M

−∞ otherwise

Then, the dual problem of (P2′) can be written as,

max
λm,m=1,...,M ;
µCi

,∀Ci∈Ci,
i=2,...,L;

µm,m=1,...,M

M∑
m=1

λmwpm

s.t. (i− 1)−
M∑
m=1

λm1{pm∈Ci} − µCi
= 0,

∀Ci ∈ Ci, i = 2, . . . , L

1− λm − µm = 0, m = 1, . . . ,M

λm ≥ 0, m = 1, . . . ,M

µCi
≥ 0, ∀Ci ∈ Ci, i = 2, . . . , L

µm ≥ 0, m = 1, . . . ,M

Eliminating variables µCi
,∀Ci ∈ Ci, i = 2, . . . , L and

µm,m = 1, . . . ,M , we obtain the same problem as (P1′).
Thus, the clearance time of the vector cyclic code associated

1Similarly, the scalar cyclic code associated with problem (P2) achieves a
clearance time of val(P1) + gap(P1′, P1) + gap(P2, P2′).
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with problem (P2′) is equal to the value of the optimal
objective function in problem (P1′), which is val(P1) +
gap(P1′,P1). Then, the clearance time of the scalar cyclic
code associated with problem (P2) is equal to val(P1) +
gap(P1′,P1) + gap(P2,P2′).

Thus far, we have proven the following lower and upper
bound for the minimum clearance time of an index coding
problem.

val(P1) ≤ Tmin(G) ≤ val(P1) + gap(P1′,P1)

where the first inequality follows from Theorem 1 and the
second inequality follows from Lemma 1. Hence, the perfor-
mance gap between the optimal index code and the optimal
vector cyclic code is ultimately bounded by the integrality gap
between integer program (P1) and its LP relaxation (P1′).

There are various techniques for bounding the integrality
gaps of integer linear programs, such as the random rounding
methods in [11]. Rather than explore this direction, the next
section provides a special case where the gap is equal to zero.

V. OPTIMALITY OF CYCLIC CODES IN PLANAR BIPARTITE
GRAPHS

In graph theory, a planar graph is a graph that can be drawn
as a picture on a 2-dimensional plane in a way so that no two
arcs meet at a point other than a common vertex. The main
result in this section is the following theorem:

Theorem 2: If the bipartite digraph G for a (unicast) index
coding problem is planar, then val(P1) = val(P2), i.e.,
gap(P1′,P1) = 0 and gap(P2,P2′) = 0. Hence, the (scalar)
cyclic code given by (P2) is an optimal index code.

The proof of Theorem 2 relies on the cycle-packing and
feedback arc set duality in arc-weighted planar graphs, which
is summarized in the following theorem.

Theorem 3 (Theorem 2.1 in [12]): Let G = (V,A,WA) be
an arc-weighed planar digraph where V is the set of vertices, A
is the set of arcs andWA is an integral arc weight assignment
which assigns each arc a ∈ A a non-negative integral weight
wa ∈ Z+. Let C be the set of cycles in G. We have

min
{∑
a∈A

xawa :
∑

a∈A xa1{a∈C}≥1,∀C∈C;xa∈{0,1},∀a∈A
}

= max
{∑
C∈C

yC :
∑

C∈C yC1{a∈C}≤wa,∀a∈A;yC∈Z+,∀C∈C
}
.

(1)

The integer program on the left-hand-side of (1) is a
minimum feedback arc set problem, while the integer program
on the right-hand-side of (1) is a cycle packing problem.
Both problems are associated with arc weighted digraphs.
To apply this theorem, we introduce the respective com-
plementary problems of (P1) and (P2). The complementary
problem of (P1) is a minimum feedback packet vertex set
problem and the complementary problem (P2) is a cycle
packing problem. However, both complementary problems are
associated with packet vertex-weighted digraphs. To settle this
issue, we modify the bipartite digraph G to produce an arc-
weighted digraph Gs, which is planar if and only if G is planar.

We then show that the minimum feedback packet vertex set
problem and the cycle packing problem in G can be reduced to
the minimum feedback arc set problem and the cycle packing
problem in Gs, respectively. The following subsections develop
the proof of Theorem 2.

A. Complementary Problems
The integer program (P1) finds the maximum packet

weighted acyclic subgraph. This is equivalent to finding the
minimum weight feedback packet vertex set. Indeed, this is
the set of packets whose deletion induce the maximum packet
weighted acyclic subgraph. Thus, an equivalent problem to
(P1) is:

(P3)

min
xm,m=1,...,M

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≥ 1,

∀Ci ∈ Ci, i = 2, . . . , L

xm ∈ {0, 1}, m = 1, . . . ,M

where xm ∈ {0, 1},m = 1, . . . ,M indicates if packet vertex
pm is selected into the feedback vertex set, objective function∑M
m=1 xmwpm is the sum weight of the feedback vertex set,

1{pm∈Ci} is the indicator function which equals one only
if packet vertex pm participates in cycle Ci,∀Ci ∈ Ci, i =
2, . . . , L, and

∑M
m=1 xm1{pm∈Ci} ≥ 1 is the constraint that

at least one packet vertex in each cycle is selected into the
feedback vertex set. If x∗m,m = 1, . . . ,M is the optimal
solution of (P3) and attains the optimal value W0, then
x∗m = 1− x∗m,m = 1, . . . ,M is the optimal solution of (P1)
and attains the optimal value W −W0.

In [9], Chaudhry et. al. introduced the concept of com-
plementary index coding problems. Instead of trying to find
the minimum number of transmissions to clear the problem,
the complementary index coding problem is formulated to
maximize the number of saved transmissions by exploiting
a specific code structure. Recall that any K-cycle code can
deliver K packets in K − 1 transmissions and hence one
transmission is saved in each K-cycle code.

The complementary index coding problem which aims to
maximize the number of saved transmissions by exploiting
scalar cycles in G can be formulated as an ILP problem as
below:

(P4)

max
yCi
∀Ci∈Ci,

i=2,...,L

L∑
i=2

∑
Ci∈Ci

yCi

s.t.
L∑
i=2

∑
Ci∈Ci

yCi
1{pm∈Ci} ≤ wpm ,

m = 1, . . . ,M

yCi
∈ Z+, ∀Ci ∈ Ci, i = 2, . . . , L

where yCi
is the number of cycle codes over each

cycle Ci,∀Ci ∈ Ci, i = 2, . . . , L, objective func-
tion

∑L
i=2

∑
Ci∈Ci yCi

is the total number of cycle
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codes, i.e., total number of saved transmissions, and∑L
i=2

∑
Ci∈Ci yCi

1{pm∈Ci} ≤ wpm is the constraint that each
packet vertex pm can participate in at most wpm cycle codes.
This is important because if packet pm has already participated
wpm times in cyclic coding actions, then all of its packets
have been delivered and new cyclic coding actions that involve
this packet vertex can no longer save any transmissions. If
the optimal solution of (P4) is y∗Ci

,∀Ci ∈ Ci, i = 2, . . . , L
and attains the optimal value W0, then the optimal solution
of (P2) is y∗Ci

= y∗Ci
,∀Ci ∈ Ci, i = 2, . . . , L; y∗m =

wpm−
∑L
i=2

∑
Ci∈Ci y

∗
Ci
1{pm∈Ci},m = 1, . . . ,M and attains

the optimal value W −W0.

B. Packet Split Digraphs

Definition 1 (Packet Split Digraphs): Given a graph G =
(U ,P,A,WP), we construct the corresponding packet split
digraph Gs = (V s,As,W s) as follows:

1) For each packet vertex pm ∈ P,m = 1, . . . ,M , we
create two packet vertices pin

m and pout
m . Let V s = U ∪

{pin
1 , p

out
1 , pin

2 , p
out
2 , . . . , pin

M , p
out
M }.

2) For each packet vertex pm ∈ P,m = 1, . . . ,M ,
we create a packet-to-packet arc (pin

m, p
out
m ) in As. For

each arc (un, pm) ∈ A, we create a user-to-packet arc
(un, p

in
m) in As. For each arc (pm, un) ∈ A, we create

a packet-to-user arc (pout
m , un) in As.

3) For each arc (pin
m, p

out
m ) in As, we assign a weight which

is equal to wpm ∈ WP . For each arc (un, p
in
m) or

(pout
m , un) in As, we assign an integral weight which is

larger than
∑M
m=1 wpm .

For any bipartite digraph G, the packet split digraph Gs,
which is an arc-weighted digraph, can always be constructed.
Figure 2 shows the packet split digraph constructed from the
bipartite digraph in Figure 1. In any digraph, a set of arcs
is called a feedback arc set if the removal of arcs in this set
leaves an acyclic digraph. If the digraph is arc-weighted, the
feedback arc set with the minimum sum weight is called the
minimum feedback arc set.

The following facts summarize the connections between the
packet split digraph and the original digraph.

Fact 1: There is a bijection between G and Gs. This bijec-
tion maps user vertices, user-to-packet arcs, packet vertices,
and packet-to-user arcs in G to user vertices, user-to-packet
arcs, packet-to-packet arcs, and packet-to-user arcs in Gs,
respectively. Thus, this bijection also maps cycles in G to
cycles in Gs.

Fact 2: Every minimum feedback arc set of packet split
graph Gs contains only packet-to-packet arcs and no packet-
to-user arcs or user-to-packet arcs.

Proof: Please refer to [13] for details.
Fact 3: If As

fd ⊆ As is a minimum feedback arc set of
the packet split digraph Gs, then a minimum feedback packet
vertex set Pfd ⊆ P of G is immediate. In addition, the sum
weight of Pfd is equal to the sum weight of As

fd.
Proof: Please refer to [13] for details.
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Fig. 2. The packet split digraph constructed from the bipartite digraph given
in Figure 1
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Fig. 3. (a) Subdivision of arc (v1, v2). (b) Contraction of arc (v1, v2).

C. Optimality of Cyclic Codes in Planar Graphs

The planarity of a digraph is not affected by arc directions,
so that a digraph is planar if and only if its undirected
counterpart, where all directed arcs are turned into undirected
edges, is planar. In an undirected graph, subdividing an edge
(v1, v2) is the operation of deleting edge (v1, v2), adding a
vertex v0, and adding edges (v1, v0) and (v0, v2) (see Figure
3a); contracting/shrinking an edge (v1, v2) is the operation
of deleting edge(v1, v2), adding a vertex v0, replacing any
edge (v, v1) with (v, v0), and replacing any edge (v2, v) with
(v0, v) (see Figure 3b). If a graph G is planar, subdividing and
contracting operations preserve the planarity.

In the index coding problem, a packet is said to be a uniprior
packet if it is contained as side information by only one user.
The following lemma is proposed to characterize the planarity
of the packet split graph Gs.

Lemma 2: Let G be an index coding problem where each
packet vertex is either unicast or uniprior and let Gs be the
packet split digraph of G. Gs is planar if and only if G is
planar.

Proof: Please refer to [13] for details.
Corollary 1: For any unicast index coding problem G, Gs

is planar if and only if G is planar.
Now we are ready to present the main proof of Theorem 2.
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Proof of Theorem 2: Let Gs = (V s,As,W s) be the packet
spit digraph of G = (U ,P,A,WP). Since G is a planar graph,
Gs is also planar by Corollary 1. Let Cs be the set of cycles
in Gs. The minimum feedback arc set problem in Gs can be
formulated as an ILP problem as follows:

(P3∗)

min
xa,a∈A

M∑
a∈A

xawa

s.t.
∑
a∈A

xa1{a∈C} ≥ 1, ∀C ∈ Cs

xa ∈ {0, 1}, a ∈ A
Similarly, the cycle-packing problem in Gs can formulated as
another integer linear programming as follows:

(P4∗)

max
yC ,C∈Cs

∑
C∈Cs

yC

s.t.
L∑

C∈Cs
yC1{a∈C} ≤ wa, ∀a ∈ As

yC ∈ Z+,∀C ∈ Cs

By Theorem 3, if Gs is a planar graph, then (P3∗) and (P4∗)
have the same optimal value. In what follows, we show that
the optimal value of (P3) is equal to that of (P3∗) and the
optimal value of (P4) is equal to that of (P4∗).
• (P3) and (P3∗) have the same optimal value: By

Fact 3, the minimum feedback arc set corresponding to
the solution of (P3∗) can be converted to a minimum
feedback packet set solution of (P3) which attains the
same optimal objective function value as that of (P3∗).
On the other hand, by Fact 1, the optimal solution of (P3)
can be converted to a solution of (P3∗) which attains the
same objective value as that of (P3).

• (P4) and (P4∗) have the same optimal value: By
Fact 1, there is a bijection from C to Cs. This is
equivalent to say, there is a bijection from variables
in (P4) to those in (P4∗). Let As1 be the set of
packet-to-packet arcs and As2 be the set of packet-to-
user and user-to-packet arcs. So As1 ∪ As2 = As and
As1 ∩ As2 = ∅. The constraints

∑
C∈Cs yC1{a∈C} ≤

wa,∀a ∈ As1 in (P4∗) are essentially the same as the
constraints

∑L
i=2

∑
Ci∈Ci yCi

1{pm∈Ci} ≤ wpm ,m =
1, . . . ,M in (P4). The other inequality constraints∑
C∈Cs yC1{a∈C} ≤ wa over a ∈ As2 can be shown

to be redundant as follows. Let yC , C ∈ Cs be an
arbitrary non-negative integral vector which satisfies all
the constraints

∑
C∈Cs yC1{a∈C} ≤ wa over a ∈ As1.

Due to the bipartite property, each cycle in G con-
tains at least one packet vertex. By Fact 1, each cy-
cle in Gs contains at least one packet-to-packet arc.
Thus, for any C ∈ Cs, there exists some a ∈ As1
such that 1{a∈C} = 1. Then, for any ā ∈ As2 we
have,

∑
C∈Cs yC1{ā∈C} ≤

∑
C∈Cs yC ≤

∑
C∈Cs

[
yC ·∑

a∈As
1
1{a∈C}

]
=

∑
a∈As

1

[∑
C∈Cs yC1{a∈C}

]
≤∑

a∈As
1
wa < wā where the first inequality follows from

the fact that 0 ≤ 1{ā∈C} ≤ 1; the second inequality

follows from the fact that for any C ∈ Cs there ex-
ists some a ∈ As1 such that 1{a∈C} = 1; the third
inequality follows from the fact that all the constraints∑
C∈Cs yC1{a∈C} ≤ wa over a ∈ As1 are satisfied; and

the last inequality follows from the fact that the weight
of any packet-to-user arc or user-to-packet-arc is strictly
larger than the sum weight of all packet-to-packet arcs.
This is to say the constraint

∑
C∈Cs yC1{a∈C} ≤ wa

over any a ∈ As2 is automatically satisfied and hence
redundant. Hence, (P4) and (P4∗) are two equivalent
optimization problems.

Combining the above facts, we can conclude that the optimal
value of (P3) is equal to that of (P4). Denote this value as
W0. According to Theorem 1, W −W0 is a lower bound on
the clearance time of the index coding problem G. On the
other hand, W − W0 is the clearance time achieved by the
scalar cyclic code corresponding to the solution of (P4), or
equivalently (P2). Hence, we can conclude that the cyclic code
given by (P2) is the optimal index code.

VI. PARTIAL CLIQUE CODES: A DUALITY PERSPECTIVE

Section IV shows the inherent duality between the tightest
lower bound given by Theorem 1 and the optimal cyclic code.
In fact, this is not an isolated case. In this section, a different
code structure involving partial clique codes is considered.
Partial clique codes are more sophisticated but often lead to
performance improvements over cyclic codes. It is shown that
the problem of finding the optimal partial clique code is the
dual problem of another LP relaxation of (P1).

A. Partial Clique Codes

Let P0 ⊆ P be a subset of k(1 ≤ k ≤ M) packet vertices
and Nout(P0) =

⋃
p∈P0

Nout(p) be the outgoing neighborhood

of pm, i.e., the subset of users who demanded packets in P0.
If each user in Nout(P0) has at least d(0 ≤ d ≤ k − 1)
packet vertices in P0 as side information, then the subgraph
of G induced by P0 and Nout(P0) is a (k, d)-partial clique. A
(k, d)-partial clique where the weight of each packet vertex
is identically 1 can be cleared with k− d transmissions using
k−d independent linear combinations of the packets (such as
using Reed-Solomon erasure codes in [1] or random codes in
[14]). For example, the digraph G in Figure 1 itself is a (3, 1)-
partial clique. If the weight of each packet vertex is identically
one, then this graph can be cleared by transmitting 2 linear
combinations in the form Z = α1p1 + α2p2 + α3p3 where
αi’s are taken from a finite filed F. If the finite field F is large
enough, we are able to find 2 linear combinations such that
the 2 linear combinations together with any one in p1, p2 and
p3 are linearly independent. Thus, each user ui, i = 1, 2, 3 can
decode pi by solving a system of 3 linear equations.

The linear index code of G is said to be a partial clique
code if it uses a sequence of coding actions that involve only
partial clique coding actions. Note that the subgraph induced
by a single packet vertex and the user vertex demanding it is by
definition a (1, 0)-partial clique. Let Tk,d, k = 1, . . . ,M, d =
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0, . . . , k − 1 be the set of all (k, d)-partial cliques in G, then
the problem of finding the optimal scalar partial clique code
can be formulated as an ILP problem as below:

(P5)

min
yTk,d

∀Tk,d∈Tk,d,
k=1,...,M,
d=0,...,k−1

M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d
(k − d)

s.t.
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d
1{pm∈Tk,d} ≥ wpm ,

m = 1, . . . ,M

yTk,d
nonnegative integral, ∀Tk,d ∈ Tk,d,
k = 1, . . . ,M, d = 0, . . . , k − 1

where yTk,d
is the number of partial clique codes over each

partial clique Tk,d ∈ Tk,d, , k = 1, . . . ,M, d = 0, . . . , k − 1,
objective function

∑M
k=1

∑k−1
d=0

∑
Tk,d∈Tk,d

yTk,d
(k − d)

is the total number of transmissions, and∑M
k=1

∑k−1
d=0

∑
Tk,d∈Tk,d

yTk,d
1{pm∈Tk,d} ≥ wpm is the

constraint that all the wpm packets represented by packet
vertex pm are cleared by partial cliques involving it. The
problem of finding the optimal vector partial clique code is
the LP relaxation of (P5).

The structure of partial clique codes is much more sophisti-
cated than that of cyclic codes. Typically, partial clique codes
have to be implemented over a large enough finite field while
cyclic codes can always be implemented over the binary field.
On the other hand, the performance of partial clique codes in
general is better (no worse) than that of cyclic codes. This is
summarized in the following lemma.

Lemma 3: In any (unicast) index coding problem, the op-
timal clearance time attained by scalar cyclic codes is no less
than that attained by scalar partial clique codes. Similarly, the
optimal clearance time attained by vector cyclic codes is no
less than that attained by vector partial clique codes.

Proof: Please refer to [13] for details.

B. Duality Between Information Theoretical Lower Bounds
and Partial Clique Codes

Define an ILP problem as below:

(P6)

max
xm,m=1,...,M

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Tk,d} ≤ k − d,∀Tk,d ∈ Tk,d,

k = 1, . . . ,M, d = 0, . . . , k − 1

xm ∈ {0, 1}, m = 1, . . . ,M

The physical meaning of (P6) is to find the maximum packet
weighted subgraph of G formed by packet vertex deletions
such that at least d packet vertices are deleted in each (k, d)
partial clique.

Lemma 4: The LP relaxation of (P5) and the LP relaxation
of (P6) are a primal-dual linear programming pair.

Proof: Please refer to [13] for details.
Integer program (P6) looks different from (P1) and it seems

that there exists no duality between the optimal partial clique
code and the tightest lower bound. However, the following
lemma shows that (P1) and (P6) are two equivalent problems.

Lemma 5: For any unicast index coding problem G, (P1)
and (P6) are two equivalent problems.

Proof: Please refer to [13] for details.
The above lemma indicates that (P6) is another repre-

sentation of (P1). However, this new representation is non-
trivial. The LP relaxations of (P6) and (P1) correspond to
partial clique codes and cyclic codes, respectively. Lemma 3
demonstrates that codes associated with (P6) in general have
better performance than codes associated with (P1). This is
because the integrality gap of the LP relaxation of (P6) is no
larger than that of the LP relaxation of (P1).

These results suggest that good code structures might be
found by exploring different representations of (P1), preferably
ones for which the LP relaxations have small integrality gaps.
If the dual of these relaxations can be interpreted as a code
structure, then this is a good code for the index coding
problem.
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